
Research Impacting the Practice of Congestion Control

Nandita Dukkipati, Yuchung Cheng, Amin Vahdat

Google Inc.

{nanditad, ycheng, vahdat}@google.com

1. INTRODUCTION

Many algorithms proposed in networking research papers are

widely used in many areas, including Congestion Control, Rout-

ing, Traffic Engineering, and Load Balancing. In this paper, we

present algorithmic advancements that have impacted the practice

of Congestion Control (CC) in datacenters and the Internet. Where

possible, we also describe negative examples, ideas that looked

promising on paper or in simulations but that performed poorly in

practice. We conclude the paper with observations on the char-

acteristics shared by these ideas in taking them from research to

impacting practice.

2. DATACENTER CONGESTION CONTROL

There has been substantial innovation in datacenter networking

for a number of reasons. First, the workloads have novel require-

ments requiring both low latency and high bandwidth. Hence, net-

working improvements have substantial impact on end application

performance. Second, datacenters are tightly controlled regimes

where end-hosts and switch changes can be deployed in a coordi-

nated manner with less absolute concern over backward compati-

bility, incremental deployment and fairness to legacy protocols.

There are two classes of congestion control algorithms in the

large TCP literature that attempt to control latency while trying to

sustain large throughput: 1) Active queue management approaches

use explicit feedback such as ECN from congested switches; 2)

Delay-based algorithms use the increase in round-trip time (RTT)

measurements above a baseline propagation delay as an indication

of queueing delay and congestion. Algorithms in both of these

classes have impacted the practice of datacenter CC.

Datacenter TCP (DCTCP) [1] made ECN based CC the defacto

standard in datacenters. In DCTCP, a simple active queue manage-

ment scheme uses a single parameter, the queue occupancy thresh-

old, to specify the threshold for marking packets with the Con-

gestion Experienced codepoint. The single threshold ensures that

sources are quickly notified of the queue overshoot. End hosts ex-

tract multibit feedback from the single bit stream of ECN marks.

Sources use the fraction of marked packets as an estimate for the

extent of network congestion. Experiments with real datacenter

workloads showed DCTCP can operate with low buffer occupancy

while still achieving high throughput.

TCP Vegas [2] is a pioneering work in first targeting to achieve

high bandwidth and low network delay. Its key insight is to use

end host measurements of packet RTT as a signal to incipient con-

gestion. Until recently, a delay based CC was considered hard for

datacenters because measuring round-trip time (RTT) is suscepti-

ble to noise in low-latency environments. Small noisy fluctuations

of delay can easily become indistinguishable from delay variations

due to congestion. Using recent advances of NIC hardware to

accurately measure RTTs and building upon the seminal work of

TCP Vegas, delay based CC such as TIMELY [12] have impacted

the practice of congestion control for RDMA networks. TIMELY

demonstrated that accurate RTT measurements provide reliable es-

timates of microsecond timescale increases of end-to-end queueing

latency. Using congestion control similar to that of TCP Vegas,

TIMELY bounds the 99th percentile tail latency of delay sensitive

datacenter applications.

The final algorithm we want to highlight in datacenters is Wa-

ter Filling algorithms. Their use in networking systems to achieve

max-min fair rate allocation for a general topology is described well

by D. Bertsekas and R. Gallager [5]: the key idea is to start with

an all-zero rate vector and to increase the rates on all paths together

until one or more links is saturated. At this point, each session us-

ing a saturated link has the same rate as all other sessions using that

link. The saturated links serve as bottleneck links for all sessions

using them. In subsequent steps of the algorithm, all sessions not

using the saturated links have their allocations incremented equally

until one or more new links become saturated. The algorithm con-

tinues in every step to equally increment rate of all sessions which

are not passing through any saturated link. The algorithm stops

when all sessions pass through at least one saturated link. Wa-

ter Filling algorithms are used in a variety of networking systems

for providing isolation amongst different entities. A good example

is the Bandwidth Enforcer (BwE) [10] system at Google that dis-

tributes bandwidth from users to jobs, and from jobs to tasks using

Water Filling to provide for max-min fair allocation.

3. INTERNET CONGESTION CONTROL

After a flurry of research in early 2000s on scaling Internet CC to

high bandwidth-delay product networks, CUBIC TCP [8] emerged

as the default CC in Linux. CUBIC extends the classic Reno CC.

Instead of fixed additive increment, its window growth is a cu-

bic function relative to the elapsed time since the last loss event.

The window grows quickly upon a window reduction, but as it

gets closer to the last window experiencing packet loss, it slows

its growth (the window increment becomes almost zero). Above

that, CUBIC starts probing for more bandwidth where the window

grows slowly initially, and accelerates its growth as it moves away

from the last loss window. This slow growth around loss windows

enhances the algorithm stability, while the fast growth away from

the loss window lets CUBIC scale to higher bandwidth. One inter-

esting note is that rapid evolution in Linux CC was facilitated by

the introduction of Linux CC modularization enabling A/B com-

parisons of CC algorithms with no kernel recompilation.

Nevertheless CUBIC still scales poorly with increasing WAN ca-

pacity because of the impractically low loss rates required to de-

liver Gbps rates. Losses over the last decade are burstier both on



the Internet and across data centers due to a combination of batch-

and-burst techniques (e.g., offload techniques), the advent of small

buffers on commodity switches, and token-bucket rate policing.

The direct approach to reduce burstiness is to increase packet

mixing and to maximize traffic entropy. The classic technique of

Fair Queueing [6] [13] achieves these goals very well. A central-

ized global FQ scheduler for all the flows can support software pac-

ing where the rate is set on a per TCP flow basis. FQ/pacing [4]

queuing discipline (Qdisc) works as follows: a TCP flow injects

packets into the Qdisc. The FQ scheduler round-robins all the ac-

tive flows with a quantum of two MTU packets. A packet is sent

immediately if the flow has enough credit, otherwise it is sched-

uled at a release time based on the packet size divided by the flow’s

pacing rate. Pacing rate is set using the flow’s congestion window

and RTT. FQ/pacing reduced bursts more effectively than pure pac-

ing because sending gaps created at the originating hosts are often

eliminated toward the destination that eventually result in bursts.

Instead FQ replaces the gaps by packets from other flows at the

originating host. As we rolled out FQ/pacing at Google we saw

distinct utilization increase and loss reduction. In particular, many

losses on our peering links moved to the destination access links.

Prior to FQ/pacing deployment, our peering routers dropped large

TSO bursts. Therefore, CUBIC delivered poor performance by re-

acting to burst losses at the peering points early instead of creating

queues later at the access links. The deployment eliminated such

losses and allowed CUBIC to probe for the real bottleneck, typi-

cally at the access links.

While FQ/pacing reduces losses, it does not eliminate them. Re-

covering losses quickly is still key to performance. For example,

TCP Forward Acknowledgments (FACK) [11] is a loss detection

algorithm in TCP using Selective Acknowledgements (SACK). The

key insight is the notion of using time sequence in detecting losses:

if packet A was sent after packet B, and if the acknowledgement

for packet A is received first, then FACK infers that packet B must

be lost. FACK is implemented in Linux in early 2000 and has had

more impact beyond that. Subsequent loss recovery (e.g., Tail Loss

Probes [7], RACK [3]) and other protocols (e.g, QUIC [9]) have

embraced the concepts FACK introduced. The success of FACK

shows that simple but insightful ideas can influence the global In-

ternet and generations of transport stacks. Another invention is the

pipe algorithm that estimates the number of packets in flight by

counting the packets delivered out-of-order, retransmitted, and lost.

The pipe algorithm simplifies the TCP stack by decoupling loss re-

covery and CC.

Caching TCP parameters based on IP addresses [14] turned out

to be less impactful than we anticipated. The idea assumes both

spatial and temporal locality of network properties on the IP path.

Therefore caching network or TCP parameters (e.g., RTT, initial

window etc.) should improve performance. However, in practice,

this approach can be more harmful than helpful. First the preva-

lence of carrier-grade NAT and DHCP means that the same IP pre-

fix does not imply the same network path. Second, the number of

active connections on a network path is highly dynamic, e.g., the

cache may remember a low slow start threshold for a short con-

nection that suffered an RTO due to burst losses. A new bulk con-

nection on the same IP prefix will exit slow start early and receive

poor throughput. These factors make caching TCP state informa-

tion ineffective. Nevertheless an open-source implementation still

helps us evaluate these research proposals more conveniently. A

potential research direction is to apply machine learning to identify

meaningful network signals amenable to caching.

4. FROM RESEARCH TO PRACTICE

There are many paths for research to impact the practice of con-

gestion control. In our experience, the paths have been different for

datacenter CC relative to Internet CC. Datacenter environments of-

fer the luxury of a single administrative domain, and hence issues

such as backwards compatibility are less of a concern. Instead,

the two key factors that we have observed for success in DC en-

vironment are: 1) simplicity and the effectiveness of the schemes

in solving a real problem, and 2) champion influencer(s) to make it

happen. The influencers could be anyone from engineers to man-

agement in authority. These same factors apply for Internet CC as

well, except the influencer or the champion either needs to part-

ner with or be a part of the open source community, which in our

specific examples is the Linux OS community.

5. REFERENCES

[1] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,

B. Prabhakar, S. Sengupta, and M. Sridharan. Data center

TCP (DCTCP). In SIGCOMM ’10.

[2] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP

Vegas: New Techniques for Congestion Detection and

Avoidance. In SIGCOMM ’94.

[3] Y. Cheng and N. Cardwell. RACK: a time-based fast loss

detection algorithm for TCP, 2016.

https://tools.ietf.org/html/draft-cheng-tcpm-rack-00.

[4] J. Corbet. Tso sizing and the fq scheduler.

https://lwn.net/Articles/564978/.

[5] D. Bertsekas and R. Gallager. Data Networks. Prentice Hall

International Editions, 1987.

[6] A. Demers, S. Keshav, and S. Shenker. Analysis and

simulation of a fair queueing algorithm. SIGCOMM Comput.

Commun. Rev.

[7] N. Dukkipati, N. Cardwell, Y. Cheng, and M. Mathis. Tail

Loss Probe (TLP): An Algorithm for Fast Recovery of Tail

Losses, 2013. https://tools.ietf.org/html/draft-dukkipati-

tcpm-tcp-loss-probe-01.

[8] S. Ha, I. Rhee, and L. Xu. CUBIC: A New TCP-Friendly

High-Speed TCP Variant. SIGOPS Operating System Review

’08.

[9] R. Hamilton, J. Iyengar, I. Swett, and A. Wilk. QUIC: A

UDP-Based Secure and Reliable Transport for HTTP/2,

2016.

[10] A. Kumar, S. Jain, U. Naik, N. Kasinadhuni, E. C. Zermeno,

C. S. Gunn, J. Ai, B. Carlin, M. Amarandei-Stavila,

M. Robin, A. Siganporia, S. Stuart, and A. Vahdat. Bwe:

Flexible, hierarchical bandwidth allocation for wan

distributed computing. In Sigcomm ’15, 2015.

[11] M. Mathis and J. Mahdavi. Forward acknowledgment:

Refining tcp congestion control. In In Proceedings of the

ACM SIGCOMM, 1996.

[12] R. Mittal, T. Lam, N. Dukkipati, E. Blem, H. Wassel,

M. Ghobadi, A. Vahdat, Y. Wang, D. Wetherall, and D. Zats.

Timely: Rtt-based congestion control for the datacenter. In

Sigcomm ’15, 2015.

[13] J. Nagle. On Packet Switches With Infinite Storage. RFC

970, 1985.

[14] J. Touch. TCP Control Block Interdependence. RFC 2140,

1997.


