
Controlling Queuing Delays for Real-Time Communication:
The Interplay of E2E and AQM Algorithms

Gaetano Carlucci
Politecnico di Bari, Italy

gaetano.carlucci@poliba.it

Luca De Cicco
Politecnico di Bari, Italy

luca.decicco@poliba.it

Saverio Mascolo
Politecnico di Bari, Italy

saverio.mascolo@poliba.it

ABSTRACT
Real-time media communication requires not only congestion
control, but also minimization of queuing delays to provide
interactivity. In this work we consider the case of real-time
communication between web browsers (WebRTC) and we focus
on the interplay of an end-to-end delay-based congestion control
algorithm, i.e. the Google congestion control (GCC), with two
delay-based AQM algorithms, namely CoDel and PIE, and two
flow queuing schedulers, i.e. SFQ and Fq_Codel. Experimental
investigations show that, when only GCC flows are considered,
the end-to-end algorithm is able to contain queuing delays without
AQMs. Moreover the interplay of GCC flows with PIE or CoDel
leads to higher packet losses with respect to the case of a DropTail
queue. In the presence of concurrent TCP traffic, PIE and CoDel
reduce the queuing delays with respect to DropTail at the cost of
increased packet losses. In this scenario flow queuing schedulers
offer a better solution.

Categories and Subject Descriptors
H.4.3 [Information systems application]: Communications
Applications—Computer conferencing, teleconferencing, and
videoconferencing; C.2.2 [Computer Systems Organization]:
Computer Communication Networks—Network Protocols

General Terms
Measurement, Algorithms, Performance, Experimentation.

Keywords
WebRTC, Congestion Control, Active Queue Management

1. INTRODUCTION
Containing delays is important for a wide spectrum of Internet

applications ranging from data center transport to Real Time
Communication (video conferencing) and live video streaming.
Since adding bandwidth can be considered relatively cheap,
Internet latency is today the main obstacle for improving
performance of these applications [3]. Delays are due to
propagation time, that can contribute with up to roughly 150ms in
planetary networks, and to queuing time, that may lead to delays in
the order of seconds when excessively large buffers are employed
in access networks (bufferbloat) [8, 14].

In the context of delay-sensitive applications, video conference
has particularly challenging requirements in terms of interactivity
and bandwidth. In fact, such applications require minimization
of delays and packet losses in order to respectively enhance
interactivity and avoid media quality degradation. These

requirements can be met by employing two complementary control
algorithms: one placed at the end points, namely the end-to-end
congestion control algorithm; the other placed in the network
routers, i.e. the Active Queue Management (AQM) algorithm.

When designing end-to-end congestion control algorithms
for video conference, UDP is the natural choice, since such
applications cannot tolerate large latencies due to TCP packet
retransmissions. Additionally, delay-based congestion control
algorithms are usually preferred to loss-based ones since they can
detect congestion before packets are lost due to buffer overflow.

On the other hand, AQM schemes control the router buffers
by dropping the packets or marking them if ECN is used [21].
Despite the fact that many AQM algorithms have been proposed
over the past two decades [7], the adoption of these algorithms
has been hampered by two main issues [19]: 1) they aim at
controlling the average queue length which is not well correlated
with network congestion and 2) an ad-hoc configuration of their
parameters has to be made. These issues, along with the bufferbloat
phenomenon, have motivated the study of new AQM algorithms,
such as CoDel [19] and PIE [20], that do not require parameter
tuning and that explicitly control the queuing delay instead of the
queue length.

Several papers have studied the interactions between (1) TCP
algorithms and AQMs [11, 15, 10], (2) data center transports and
network prioritization [18], (3) low priority congestion control and
AQMs [9].

In this paper we consider the interplay of end-to-end delay-based
congestion control for real-time communication and AQM
algorithms placed in routers.. This research topic is particularly
timely in view of 1) the increased deployment of new AQM
algorithms in operational networks (see f.i. [10]) and 2) the
emerging WebRTC framework which is an enabling technology
to allow real-time communication among users through Web
browsers. To the purpose, we have considered PIE and CoDel as
representative of parameterless AQM algorithms and the Google
Congestion Control (GCC) since it is the only widely deployed
algorithm which adheres to the WebRTC framework. In particular
GCC is implemented in the Google Chrome browser which is today
beyond any doubt the most used browser1.

We analyze this interaction in two key scenarios: 1) a video flow
in isolation, and 2) a video flow with a varying number of TCP
flows. Results show that, in the first scenario, the interplay between
GCC and AQMs is not always beneficial since AQMs induce losses
on the video flow not experienced under DropTail with a queue
size accommodating 300ms worth of packets (DT/300) [22]. When
concurrent TCP traffic is considered, both PIE and CoDel are able

1http://www.w3schools.com/browsers/default.
asp
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Figure 1: Google congestion control architecture

to effectively reduce the queuing delays compared to DT/300, but
they provoke packet losses on the video flow that increase with
the number of concurrent TCP flows. This issue is alleviated by
flow queuing schedulers which provide isolation among the flows
avoiding complex dynamic interaction.

2. ALGORITHMS
This Section briefly describes the algorithms involved in our

study. Section 2.1 reviews CoDel and PIE along with Fq_CoDel
and SFQ. Section 2.2 describes the Google Congestion Control
(GCC) which is used in Google Chrome browsers to implement
congestion control functionalities in the WebRTC stack and in
Google Hangouts.

2.1 AQM Algorithms

2.1.1 CoDel
The goal of CoDel (Controlled Delay Active Queue

Management) [19] is to contain the queuing latency while
maximizing the throughput. CoDel does not require any
parameters tuning and it has been designed to work across a wide
range of conditions with different links and round trip times.
CoDel works as follows: a timestamp is added to each packet
at the ingress side of the queue in order to measure the packet
sojourn time at the egress side when packets are dequeued. The
sojourn time is then compared to a target delay (5ms by default);
if it is below the target the packet is forwarded, otherwise the
algorithm starts a timer and forwards the packet. When packets
are dequeued, CoDel checks the sojourn time, and if it gets below
the target, the timer is stopped. However, if the timer reaches the
value of interval (100ms by default), CoDel enters the dropping
state which is left when the sojourn time gets below the target
delay. During this state, whenever the interval timer expires a
packet is dropped, the timer is reset, and the next timer duration is
set to interval← interval/

√
N + 1, where N is the cumulative

number of packets dropped while in dropping state. Thus, the
longer the sojourn time stays above the target delay, the higher
the packet dropping frequency. Finally, as soon as the measured
sojourn time of an outgoing packet gets below the target, the
dropping state is left and interval is restored to its default value.

2.1.2 PIE
Similarly to CoDel, PIE (Proportional Integral controller

Enhanced) [20] aims at controlling the queuing latency and does
not require parameters tuning. PIE employs a proportional-integral
(PI) controller that computes a random probability to mark or drop
packets, based on a target queuing latency. The drop probability p
is computed as follows:

p = p+ α · (delest − targetdel) + β · (delest − olddel) (1)

where delest is the queuing delay estimated based on the queue
occupancy, targetdel is the target delay (20ms by default) and

olddel is the value of the queuing delay estimated in the previous
updating. The value of p is updated every Tupdate (30ms by
default). α and β are respectively the integral and proportional gain
of the PI controller. PIE is able to dynamically adapt these values
based on the level of congestion which is expressed by the value of
p: if the network is congested, α and β are increased to make the
controller reaction faster. In [20] it is argued that PIE requires less
computational efforts compared to CoDel. In fact, PIE does not
need to track the per-packet sojourn time since it marks or drops
packets on arrival (enqueue time) differently from CoDel that drops
packets on departure.

2.1.3 SFQ
SFQ [16] assigns flows in a fixed set of queues serviced in strict

round-robin order; the maximum number of queue is configurable
(1024 by default in the Linux implementation). In order to assign a
queue to an ingress packet a hash function is applied to its 5-tuple
defined by the IP source and destination, layer 4 port source and
destination and layer 4 protocol number; packets with the same
hash are assigned to the same queue.

2.1.4 Fq_CoDel
Fq_CoDel [12] is a hybrid scheme combining flow scheduling

with active queue management. It aims at keeping queue lengths
short while providing isolation for low-rate traffic such as DNS,
web, and videoconferencing traffic. It consists of a set of queues
and a scheduler that decides from which queue a packet should
be dequeued. CoDel is employed at each queue. The dequeuing
process is byte-based employing a deficit round-robin mechanism.

2.2 Google Congestion Control
Figure 1 shows the architecture of the end-to-end Google

Congestion Control (GCC) algorithm [4]. The sender employs
a UDP socket to send RTP packets and receive RTCP feedback
reports from the receiver. The algorithm has two components:
1) a delay-based controller, placed at the receiver, that computes
a rate Ar that is fed back to the sender with the aim of keeping
the queuing delay small; 2) a loss-based controller, placed at the
sender, that computes the target sending bitrate As that cannot
exceed Ar .

The sender-side congestion control. It is a loss-based congestion
control algorithm that acts every time tk the k-th RTCP report
message arrives at the sender or every time tr the r-th REMB2

message, which carries Ar , arrives at the sender. The RTCP reports
include, among other feedback information, the fraction of lost
packets fl(tk) computed as described in the RTP RFC. Based on
fl(tk), the controller computes the rate As(tk), measured in kbps,
according to the following equation:

As(tk) =


As(tk−1)(1− 0.5fl(tk)) fl(tk) > 0.1

1.05(As(tk−1) + 1kbps) fl(tk) < 0.02

As(tk−1) otherwise
(2)

The rationale of (2) is simple: 1) when the fraction of lost packets
is considered small (0.02 ≤ fl(tk) ≤ 0.1), As is kept constant,
2) if a high fraction lost is estimated (fl(tk) > 0.1) the rate is
multiplicatively decreased 3) when the fraction lost is considered
negligible (fl(tk) < 0.02), the rate is multiplicatively increased.
After As is computed through (2), it is set as As ← min(As, Ar)
to avoid that As exceeds the last received value of Ar .

2http://tools.ietf.org/html/
draft-alvestrand-rmcat-remb-03
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Figure 2: Remote rate controller

The receiver-side controller. This controller is made of the three
components shown in Figure 1. Each time ti a group of RTP
packets that forms the i-th video frame is received, the one-way
queuing delay variation m(ti) is estimated by the arrival-time filter
(ATF). In order to estimate m(ti), the ATF starts by measuring the
one way delay variation dm(ti) = ti−ti−1−(Ti−Ti−1), where Ti

is the time at which the i-th video frame has been sent and ti is the
time at which it has been received. The one way delay variation is
considered as the sum of three components [4]: 1) the transmission
time variation, 2) the one-way queuing time variation m(ti), and
3) the network jitter n(ti). The following mathematical model of
the one way delay variation is assumed:

d(ti) =
∆L(ti)

C(ti)
+m(ti) + n(ti) (3)

where ∆L(ti) = L(ti) − L(ti−1), L(ti) is the i-th video frame
size, C(ti) is an estimate of the bottleneck link capacity, and n(ti)
is the network jitter modeled as a Gaussian noise. A Kalman filter
is used to extract m(ti) from the measured one way delay variation.

Then, the over-use detector compares the estimated one-way
queuing delay variation m(ti) with an adaptive threshold γ(ti)
proposed in [5]: when m(ti) gets above γ(ti), the network is
considered congested and the overuse signal is generated; on the
other hand, if m(ti) decreases below −γ(ti) , the network is
considered underused and the underuse signal is generated; when
m(ti) falls back in [−γ(ti), γ(ti)] a normal signal is produced.

Finally, the signal s is fed to the remote rate controller which
drives the finite state machine (FSM) shown in Figure 2 whose goal
is to empty the queues along the end-to-end path. Ar is increased
(Increase state), decreased (Decrease state) or kept constant (Hold
state) depending on its state. In particular Ar is set according to the
equations shown in the states of Figure 2, where η ∈ [1.005, 1.3],
α ∈ [0.8, 0.95], and R(ti) is the receiving rate measured in the last
500ms. It is worth noticing that Ar cannot exceed 1.5R(ti). The
computed rate Ar is sent to the sender through REMB messages.

3. EXPERIMENTAL TESTBED
In this section we describe the experimental scenario. More

details on how to reproduce the experiments are available on-line3.

Testbed architecture. Figure 3 shows an essential view of the
experimental testbed. Four Linux machines, equipped with a
Linux kernel 3.16.0 natively supporting all the AQM algorithms
considered in the experiments, are employed. Two machines (Node
1 and Node 2) are connected through an Ethernet cable running
two Chromium browsers4 each and an IPerf-like application to

3http://c3lab.poliba.it/index.php?title=
WebRTC_Testbed
4http://code.google.com/p/chromium/
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Figure 3: Experimental testbed

generate or receive a configurable number of TCP long-lived flows;
a third machine (not shown in the Figure) runs a web server which
handles the signaling required to establish the video calls between
the browsers. The fourth machine is the experiment orchestrator
that performs experiment automation. The propagation delay on
node Node 1 has been set to 50ms through the NetEm linux module.
We have used a Token Bucket Filter (TBF) to set the ingress link
capacity b of Node 2. We have turned off the NIC optimization
parameters that could interfere with the experiments, i.e. TCP
segmentation offload, jumbo frame, generic segmentation offload.

Video and TCP settings. The TCP sources employ the CUBIC
congestion control, the default in Linux kernels, and log the
congestion window, the slow-start threshold, the RTT, and the
sequence number. A Web server5 provides the HTML page
that handles the signaling between the peers using the WebRTC
JavaScript API. The same video sequence is used to enforce
experiments reproducibility. To the purpose, we have used the
Linux kernel module v4l2loopback6 to create a virtual webcam
device which cyclically repeats the “Four People”7 YUV test
sequence. Chromium encodes the raw video source with the VP8
video encoder8. We have measured that, without any bandwidth
limitation, VP8 limits the sending bitrate As(t) to a maximum
value of 2Mbps.

AQM algorithm settings. We have employed the settings reported
in Table 1 as suggested in [11]. In the case of CoDel the suggested
target value is 13ms when the link capacity is 1Mbps otherwise
the default value of 5ms is used. Regarding PIE, we have used the
default tuning parameters employed in the Linux implementations.
Only in Section 4.1 we have varied the target parameter of CoDel
and PIE to perform a sensitivity analysis. In the case of DropTail
and SFQ we have set the queue size to 300ms, which is the time
taken to drain the queue when it is completely full, as suggested
in the IETF RMCAT draft [22] for the evaluation of congestion
control algorithms for real-time communication.

Metrics. In order to quantitatively assess the interaction between
GCC flows and AQM/flow schedulers we consider QoS metrics
such as packet loss ratio, average bitrate, and delay, which are
known to be well correlated with QoE metrics through, for
instance, the IQX hypothesis [6]. Following this approach has
the merit of focusing the discussion on metrics that are not

5https://apprtc.appspot.com/
6https://github.com/umlaeute/v4l2loopback
7https://people.xiph.org/~thdavies/x264_
streams/FourPeople_1280x720_30/
8http://www.webmproject.org/
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Algorithm Parameter Value
DropTail (DT/300) queue size 300ms

Codel

interval 100ms

target 13ms at 1Mbps,
5ms otherwise

limit 1000pkts

PIE
tupdate 30ms
ttarget 20ms
limit 1000pkts

SFQ queue size 300ms

Fq_Codel
target 13ms

interval 100ms
limit 10240pkts

Table 1: AQM schemes parameter

sensitive to application specific aspects, such as the employed
video encoder. Moreover, splitting the evaluation of QoE metrics
from QoS metrics also follows the guidelines recently defined
within the IETF RTP Media Congestion Avoidance Techniques
(RMCAT) working group. In particular, we consider: 1) Channel
Utilization U = R/b, where b is the known link capacity
and R is the average received rate; for every experiment we
measure the average value and the standard deviation; 2) Loss ratio
l = (byte lost)/(byte sent); for every experiment we measure the
cumulative value; 3) Queuing delay Tq(tk) = RTT (tk)−RTTm,
measured each time tk a RTCP sample is received, where RTT (tk)
is the k-th RTT sample and RTTm is the known round trip
propagation delay; for every experiment we compute the average
value, the standard deviation, the 5th, 25th, 50th, 75th and 95th
percentile.

4. EXPERIMENTS
In this section we investigate how the performance of real-time

video flows is impacted by the interaction of GCC congestion
control algorithm employed at the end points, and several AQMs
employed at the bottleneck queue. Throughout all this section we
consider the DropTail (DT/300) queuing discipline as the baseline
for performance comparison.

The analysis is divided in two parts. The first part considers
the case of a single real-time video flow accessing a bottleneck
governed by either DT/300, CoDel or PIE. The second part
considers the case of one GCC flow sharing the bottleneck with
a varying number of TCP long-lived flows. This is a particularly
challenging scenario for real-time flows, since it is well-known
that when delay-based flows share a bottleneck with loss-based
ones, they are typically penalized in terms of channel utilization
and delays. Thus, in order to provide a more complete picture,
in addition to DT/300, PIE, CoDel, we also consider the SFQ
scheduling algorithm and Fq_CoDel to quantify the benefits
brought by flow isolation.

Finally, we remark that also the case of multiple concurrent GCC
flows has been considered. Since these results do not add any new
insights, they have been omitted due to space constraint.

4.1 Video flow in isolation
We start the analysis by comparing the video metrics obtained

when one video flow runs in isolation over a bottleneck governed
by either DT/300, PIE, or CoDel using the settings reported in
Table 1. We have considered two values for the link capacity
b ∈ {1, 2}Mbps and the round trip propagation delay has been

link capacity
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Figure 4: Loss ratio (average and standard deviation) and
queuing delay (box plot) in the case of a single GCC flow

set to 50ms. We have purposely considered the case of a link
capacity b = 2Mbps matching the maximum video encoder bitrate
(see Section 3). For each combination of this setting we have
run 6 experiments establishing video calls with a duration of 300
seconds.

The results of the experiments are shown in Figure 4 and grouped
in accordance with the queue management discipline. Regarding
the packet loss ratio, average values and standard deviation are
shown. Queuing delays are depicted using a box and whisker
plot: the bottom and top of the box are respectively the 25-th
and 75-th percentile, whereas the band in the box is the median;
the end of the whiskers represent the 5-th and 95-th percentile.
Even though Figure 4 does not depict it due to lack of space,
a channel utilization higher than 90% has been measured across
all combinations of bottleneck capacity and queuing discipline.
Figure 4 shows that median queuing delays obtained under both
PIE and CoDel are only negligibly lower than the one obtained
under DT/300. The only improvement provided by CoDel and
PIE is a reduction of the 95-th percentile from 48ms to around
30ms. However, if decreasing the tail latency is crucial in many
interactive services such as data center transport, gaming, and web
search, video conferencing is more tolerant to tail latency and
less to losses [3]. Median queuing delays obtained with PIE and
CoDel are similar to those of DT/300 due to the fact that GCC is
able to effectively contain the queuing thanks to its delay-based
congestion controller. Let us now consider packet losses: in the
case of DT/300 no losses are measured regardless of the bottleneck
capacity; PIE provokes slightly less than 0.5% packet losses in the
case of a 1Mbps link and, as expected, does not provoke any losses
in the case of b = 2Mbps; CoDel provokes consistently the highest
losses, roughly 0.75% in the case of b = 1Mbps and less than 0.5%
in the case of b = 2Mbps. This shows that CoDel is too aggressive
and provokes losses even when link capacity is 2Mbps, i.e. when it
is equal to the maximum sending rate that can be produced by the
application.

The findings described above motivate us to dig deeper and
perform a sensitivity analysis in which AQM algorithm parameters
are varied. With this purpose we let the CoDel target τCoDel, whose
default value is 5ms, vary in the set:

TCoDel = {5, 13, 25, 40, 60, 80, 100, 150, 200, 250}ms

whereas we let the PIE target τPIE, whose default value is 20ms,
vary in the set:

TPIE = {5, 10, 15,20, 30, 40, 60, 100, 150, 200, 250}ms

For each value of the targets 6 runs of a duration of 300s have
been carried out in the case of a constant link capacity of 1Mbps.



90

80

70

60

100 1.5

1

0.5

0

15

10

5

0

15

10

5

0

1.5

1

0.5

0

25 40 10060 80 150 200 250135

90

80

70

60

100

C
ha

nn
el

 U
til

iz
at

io
n 

[%
]

Lo
ss

 R
at

io
 [%

]

C
ha

nn
el

 U
til

iz
at

io
n 

[%
]

Lo
ss

 R
at

io
 [%

]

25 40 10060 80 150 200 2505 13 25 40 10060 80 150 200 2505 13
CoDel [ms]CoDel [ms]CoDel [ms]

100 150 200 2505
10
15

20
3040 60

Pie Target [ms]

100 150 200 2505
10
15

20
3040 60

Pie Target [ms]

100 150 200 2505
10
15

20
3040 60

Pie Target [ms]

(a) CoDel

(b) PIE

Q
ue

ui
ng

 [m
s]

Q
ue

ui
ng

 [m
s]

τττ

Figure 5: Sensitivity analysis: impact of CoDel and PIE targets on GCC flow metrics (average and standard deviation)

3 5 83 5 8 3 5 8
0

0.5

1

1.5

0

3000

2000

1000

1500

2500

500

350
300

250
200
150

100
50

0

Lo
ss

 R
at

io
 [%

]

G
oo

dp
ut

 [k
bp

s]

Q
ue

ue
in

g 
[m

s]

DT/300 Pie Codel Fq Codel Sfq

fair share

nTCP nTCP nTCP

Figure 6: A single video flow with nTCP concurrent TCP flows
over a 10Mpbs bottleneck link

The results are shown in Figure 5 that depicts average and standard
deviation of the metrics defined in Section 3 as a function of
AQMs targets. The dashed lines shown in the figure represent the
corresponding value of the metric measured in the baseline case
of DT/300. Figure 5 (a) shows the results obtained when CoDel
is employed: even though channel utilization is always kept above
90%, the highest values are the ones measured when τCoDel is high,
i.e. when CoDel is less aggressive in controlling the delay. In fact,
when τCoDel is close to its default value of 5ms, the interaction
of GCC and CoDel becomes detrimental in terms of utilization
and loss ratio. This is due to the fact that CoDel reacts to the
delay inflation before GCC and induces losses on the video flow.
Consequently, GCC works in loss-based mode which leads to a
slightly lower sending bitrate. Finally, queuing delays are always
kept on average below 15ms regardless of the value of τCoDel.

Figure 5 (b) shows the sensitivity with respect to PIE target τPIE.
Overall, packet losses decrease from less than 0.5% for τPIE =
5ms to zero, recovering the DT/300 performance, when the target is
larger than 150ms (roughly one order of magnitude larger than the
default). The queuing is only slightly decreased when τPIE is small,
i.e. when PIE drop packets in order to keep the queuing delay under
the set-point τPIE. Interestingly, the minimum of queuing delay is
obtained in correspondence of the default value of 20ms used in the
Linux implementation.

To conclude, this scenario shows that the queuing delay can
be successfully contained by employing the GCC delay-based
congestion control. In this case AQMs degrade performance since
they introduce packet losses.

4.2 Video flow versus multiple TCP flows
This section considers the case of one real-time video flow

when competing with a number nTCP of concurrent TCP flows.
We consider AQM algorithms, namely PIE and CoDel, or packet
schedulers, i.e. SFQ and Fq_CoDel. We employ the same settings
of Section 4.1 and shown in Table 1.

We have taken into account two cases: 1) nTCP ∈ {3, 5, 8} with
link capacity kept constant at 10Mbps; 2) nTCP ∈ {1, 4, 9, 49, 99}
with the link capacity b ∈ {2, 5, 10, 50, 100}Mbps set in such
a way that the fair share b/(nTCP + 1) for each experiment is
constant and equal to 1Mbps. For each combination of these
settings 6 runs have been carried out by establishing video calls
with a duration of 400 seconds and started at t = 0. TCP flows are
started at t = 100s and stopped at t = 300s. Results are shown
in Figure 6 and Figure 7 where each bar represents the average
value and the error bar is the standard deviation; bars are grouped in
accordance with the the number of concurrent TCP flows. Figure 6
and Figure 7 show that the goodput obtained by the video flow is
always kept around the fair share, even in the case of DT/300 thanks
to the GCC adaptive threshold design [5]. Let us now focus on the
loss ratio. Under DT/300, the loss ratio is contained in the range
]0, 0.5]% for any number of concurrent TCP flows; this means that
GCC, in order to fairly share the bandwidth with the TCP flow,
has been driven in the loss-based mode in which GCC behaves
more aggressively in order to fairly share the link with TCP. Video
packet losses are higher than 1% when PIE or CoDel are used.
In particular, Figure 6 shows that, when increasing the number
of concurrent TCP flows, induced losses under PIE, CoDel and
Fq_CoDel are increased which indeed is detrimental for real-time
video quality.

Let us now consider the queuing delays. In the case of DT/300
a queuing delay of 300ms is obtained. This is expected since TCP
fills the pipe and the queue size has been set in such a way that
the maximum queuing delay is 300ms. All the other considered
algorithms were able to contain the queuing delay around 50ms
in the case of nTCP = 1 or less than 50ms with more concurrent
TCP flows. Overall, SFQ provided the best results since it achieved
the same queuing delay of PIE, CoDel, and Fq_Codel, but with
remarkably lower packet losses.

To get a further insight on the different behavior of GCC with
SFQ or with Fq_Codel in the presence of concurrent TCP traffic,
Figure 8 compares the dynamics of rates, RTT and fraction loss in
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the two cases when nTCP = 99 and b = 100Mbps. As expected,
in both cases the video flow reaches the fair share at 1Mpbs with
an RTT small enough to guarantee real-time interaction. However,
the GCC flow does not experience any losses in the case of SFQ,
whereas Fq_CoDel provokes losses due to the CoDel algorithm.

5. RELATED WORK
Most of the literature on the evaluation of AQM algorithms

considers standard TCP flows in order to measure metrics such
as TCP throughput or induced queuing delays [19, 20, 15].
In [11] an extensive experimental evaluation has been carried
out sending real traffic, comprising Web pages, VoIP and TCP
bulk transfer over residential links governed by a wide selection
of bottleneck queue management. The evaluation shows that
AQMs help to reduce queue latency induced by TCP, whereas
flow queuing schedulers alleviate performance issues due to
concurrent flows interaction providing the best balance in terms
of throughput and queuing latency. In [10] authors study the
performance of modern AQM schemes deployed over a DOCSIS
cable modem environment through Ns-2 simulations. A rich
traffic mix is considered, including FTP, adaptive video streaming
over HTTP, and VoIP. The study finds that AQMs remarkably
improve applications performance compared to Drop Tail queues.
A different conclusion is drawn in [2] where author points out that
application performance may degrade due to the losses induced by
PIE and CoDel since they focus only at keeping the queuing delay
under a constant target.

Only a few publications considered the interactions of AQMs
and delay-based congestion control algorithms. In [9] an undesired
behavior is described when queue management algorithms interact
with bitTorent flows which employ a delay-based congestion
control algorithm named LEDBAT [23]. LEDBAT is meant to
contain the queuing delay and yield bandwidth in presence of
concurrent TCP flows. Authors have found that, when queue
management algorithms are present on the path, an undesired
phenomenon occurs causing LEDBAT flows to fairly share the
bandwidth with TCP flows. The closest work to ours is [13]
that considers SVC-based Congestion Control (SCC), a recently
proposed delay-based congestion control algorithm for interactive
video, and TCP CUBIC in the case of queues governed either by
DropTail or PIE. Ns-2 simulation results show that SCC is not able

to grab the fair share when competing with TCP flows in the case
DropTail queues are employed.

In this work we consider GCC, a congestion control algorithm
that today is employed in Google Chrome and Google Hangouts to
transport video conferencing traffic. At the best of our knowledge
this is the first work that analyzes the interplay of AQMs and real
video conference traffic. Finally, we point out that this work does
not consider the potential benefit of employing explicit congestion
notification (ECN). Even though Internet routers are increasingly
supporting ECN for UDP traffic [17], end-points are required
to enforce ECN decisions at the application layer, i.e. through
RTP/RTCP protocols [24]. Nevertheless, at the time of this writing
the implementation of RTP/RTCP used by GCC does not support
the ECN yet.

6. CONCLUSIONS
In this paper we have evaluated the interaction between the

end-to-end delay-based congestion control algorithm proposed by
Google (GCC) with delay-based AQM algorithms, namely CoDel
and PIE as well as with flow queuing schedulers such as SFQ and
Fq_CoDel. Our analysis has shown that, if only real-time video
traffic is considered, the end-to-end congestion control is able to
contain the queuing delay with zero losses. On the other hand, PIE
and CoDel provide the same queuing delay of DropTail but with
the drawback of introducing packet losses. When concurrent TCP
traffic is considered, both PIE and CoDel are able to effectively
reduce the queuing delays compared to DropTail, but they provoke
packet losses on the video flow that increase with the number of
TCP flows. These findings are in accordance with those presented
in [2] where the author concludes that enforcing tight queuing
delays using AQMs at the expense of higher losses is unlikely
to be the optimal strategy to improve applications performance.
Moreover, we show that flow queuing schedulers offer a better
solution since they provide flow isolation. The best interplay is
obtained with SFQ that obtains the best performance in terms of
queuing delay and packet losses. This result is in agreement with
the theoretical analysis presented in [1] in which authors conclude
that per flow queuing is the only traffic control needed to satisfy
performance requirements.
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