
TussleOS: Managing Privacy Versus Functionality
Trade-Offs on IoT Devices

Rayman Preet Singh, Benjamin Cassell, S. Keshav, Tim Brecht
Cheriton School of Computer Science, University of Waterloo
{rmmathar, becassel, keshav, brecht}@cs.uwaterloo.ca

Abstract
Networked sensors and actuators are increasingly permeat-
ing our computing devices, and provide a variety of functions
for Internet of Things (IoT) devices and applications. How-
ever, this sensor data can also be used by applications to
extract private information about users. Applications and
users are thus in a tussle over access to private data. Tussles
occur in operating systems when stakeholders with compet-
ing interests try to access shared resources such as sensor
data, CPU time, or network bandwidth. Unfortunately,
existing operating systems lack a principled approach for
identifying, tracking, and resolving such tussles. Moreover,
users typically have little control over how tussles are re-
solved. Controls for sensor data tussles, for example, often
fail to address trade-offs between functionality and privacy.
Therefore, we propose a framework to explicitly recognize
and manage tussles. Using sensor data as an example re-
source, we investigate the design of mechanisms for detect-
ing and resolving privacy tussles in a cyber-physical system,
enabling privacy and functionality to be negotiated between
users and applications. In doing so, we identify shortcom-
ings of existing research and present directions for future
work.

1. INTRODUCTION
Networked sensors such as accelerometers, occupancy de-

tectors, and gyroscopes are now common in smartphones,
tablets and smart home management solutions [12, 17]. Col-
lectively, these devices make up part of the expanding Inter-
net of Things (IoT). By 2020, analysts predict that 50 bil-
lion networked sensors will be deployed worldwide [5]. This
explosive growth has transformed commodity compute plat-
forms from simple computational resources into networked
cyber-physical systems.

Operating systems have traditionally mediated conflicting
access requirements (or tussles [11]) for computational re-
sources such as CPU time, memory, disk and network band-
width, and access to I/O devices. Networked cyber-physical
systems, however, contain a broader set of contended re-
sources (outlined in Table 1), which a wide variety of stake-
holders, including device users, application developers and
OS providers compete for.

As an example, consider the Nest thermostat [2], which
uses passive infrared (PIR) sensors to infer users’ home oc-
cupancy. This occupancy information is used by the de-
vice to manage home heating and cooling systems, but it
could also be misused to reveal information which the user
wishes to keep private. In this case, a privacy tussle arises

from the application’s desire to have unlimited sensor access
and a user’s desire for privacy. Michalevsky et al. [29] pro-
vide another example, demonstrating that a smartphone’s
MEMS gyroscope can be abused to eavesdrop on the speech
of users near the phone. These privacy tussles could not
have arisen in a traditional (non-networked and sensorless)
compute platform and thus present an exciting area for re-
search.

Resource Examples
Traditional CPU, RAM, disk, disk and network I/O
Sensors Mic, camera, GPS, accelerometer

Actuators Electrical switch, thermostat, lock, display
Data Sensor data streams, user-generated con-

tent (contacts, images, etc)

Table 1: System resources.

OSes typically implement a set of resource management
mechanisms and policies, such as CPU schedulers and mem-
ory managers, with little user control and no formal abstrac-
tions for tussle management. Moreover, most OSes are inef-
fective at resolving privacy tussles, and popular applications
tend to leak private data [3]. Smartphone OSes such as An-
droid [1] require users to allow or deny full sensor access
for applications, and do not adequately inform the user of
the implications of their choices on privacy or functional-
ity. Overwhelmed users gravitate towards extreme policies,
either by outright avoiding useful, privacy-sensitive appli-
cations [10], or by thoughtlessly allowing sensor access re-
quests without understanding the consequences [16, 33]. In
contrast, a tussle-based abstraction benefits i) users, by al-
lowing them to gracefully balance application functionality
against data privacy, and ii) application developers, by al-
lowing broader distribution of applications.

Prior systems have attempted to manage privacy tus-
sles [8, 7, 30, 6, 25], but they suffer from several short-
comings. For instance, these systems do not do not permit
a degradation in application functionality to protect user
data privacy, and most of them require frequent device soft-
ware updates to handle advances in sensing capabilities or
inference algorithms. We elaborate on this in Section 9.

In their seminal work, Clark et al. [11] introduced the no-
tion of tussles in cyberspace. We argue that cyber-physical
OSes need to formally recognize privacy tussles and must
implement mechanisms and policies to resolve them. Provid-
ing stakeholders (or actors) with a principled way to express
and negotiate their privacy and functionality requirements,
and ensuring that the OS resolves tussles according to struc-
tured policies, enables an easier understanding of system be-

haviour for both users and applications, while also providing
a reliable way of expressing and interacting with resources.

In this paper, we ask: how can we best outfit a cyber-
physical operating system with a framework for managing
privacy versus functionality trade-offs? We take the first
steps in answering this question by designing a framework
to formalize, detect, and resolve privacy tussles. We make
the following contributions:

• We propose a privacy tussle abstraction for cyber-
physical operating systems.

• We survey prior work to identify mechanisms and poli-
cies that underlie a tussle-based framework.

• We identify various open problems for instantiating a
privacy management framework and outline directions
for future work.

• We outline an architecture that allows users and appli-
cations to detect and manage tussles. For simplicity,
we focus on tussles involving sensors, that balance pri-
vacy and functionality.

2. DESIGN GOALS
Our primary design goal is to extend an existing cyber-

physical OS (such as Android) with a framework that:

• Provides actors with high-level abstractions to express
resource and privacy requirements.

• Allows potentially conflicting requirements to be arbi-
trated to achieve an appropriate balance of resource
access and functionality.

• Provides the operating system with a set of mecha-
nisms to resolve tussles between actors and to enforce
the resolved behaviour. This encompasses compiling
the high-level requirements of actors into manageable
low-level system behaviours.

Our initial focus is on networked sensor data tussles be-
cause of their rapid emergence, and because of the sensitive
nature of the information involved. Our framework there-
fore incorporates users and applications as the two primary
stakeholders. Furthermore, our initial design ignores collu-
sion between applications. We leave the incorporation of
information flow control mechanisms to prevent malicious
or colluding actors to future work.

We believe that an ideal tussle framework should demon-
strate the following properties:

Expressiveness: Numerous networked sensor applications
exist today, and others are rapidly emerging [5]. Therefore,
the framework should allow applications to freely express
their sensing requirements. That is, they should be able
to specify the type of sensors the application requires, the
frequency at which access is required, and the level of ac-
cess. The framework should also allow the user to define ac-
ceptable sensor access by applications and understand the
impact of different levels of privacy on applications’ func-
tionality.

Resolution: After the stakeholders have expressed their
constraints on sensor access, the framework should i) de-
tect conflicting requirements (i.e. tussles), and ii) resolve

tussles by balancing the requirements (with user input, if
necessary). The functionality of the application may be lim-
ited by the user’s privacy requirements. This implies that
application functionality should degrade gracefully with in-
creasingly strict privacy requirements. This is a significant
departure from most existing application frameworks, which
typically require a user to accept all of an application’s sen-
sor access requests at installation time. Even a system such
as Android Marshmallow, which allows a user to remove an
application’s previously-granted sensor capabilities, is insuf-
ficient as it only works on a binary allow or disallow basis
and provides no useful inference breakdown for the user to
be able to make functionality-privacy trade-offs. A user re-
turning to adjust an application’s permissions in Android
Marshmallow or iOS is provided with no relatable criteria
from which they can refine their decisions, and even if they
were to do so, their adjustments are limited to rendering the
application usable with few meaningful privacy restrictions
(turning sensors on) or rendering the application unusable
(turning sensors off). Rather, we believe that applications
and users should be able to negotiate their requirements to
arrive at a flexible and informed compromise which provides
both adequate functionality for applications and privacy for
users.

Robustness: The framework should guarantee that any
sensor access made by an application respects the tussle res-
olution. In addition, since many applications rely on the in-
tegrity of sensor readings, the framework should guarantee
this integrity. A sample application that requires trusted
readings to be effective is an energy billing application [38].

Extensibility: The framework should be able to support
new sensor types, new algorithms that can draw more so-
phisticated inferences using existing sensor data, and new
ways in which stakeholders may want to express their re-
quirements.

Understandability: The framework should be comprehen-
sible to technically-illiterate users. It should allow the user
to understand the functionality an application can provide,
and the inferences it can draw, given a certain level of sen-
sor access. This will make it intuitive for the user to make
informed trade-offs between functionality and privacy.

3. ARCHITECTURE OUTLINE
In light of the design goals, we present an outline for a

framework to define, resolve, and implement solutions to
privacy tussles. In subsequent sections, we survey existing
work and determine the extent to which it can be leveraged
to achieve these design goals.

We focus on devices such as the Raspberry-Pi [4] that are
widely used in cyber-physical systems, and which provide
applications with computational resources, and networked
sensors and actuators. Applications run on the device, col-
lecting and processing sensor data, and may be supported by
a server-side component. This server-side component may
run on a cloud-hosted virtual machine, or a user-controlled
virtual execution environment [38]. Applications may use
cloud-backed storage systems such as Bolt [17] for data stor-
age.

Figure 1 provides an overview of our framework for han-
dling networked sensor data tussles. Application developers
and users are provided with interfaces which they use to ex-
press their sensing requirements and data privacy require-

ments respectively. Application developers express their
sensing requirements through timing parameters (labelled
(ts, tw, tp)). Users express their requirements using infer-
ences (labelled I1, I2, I3). Sections 4 and 5 explain these pa-
rameters and their interfaces in greater detail, and related
work.

Update
Manager

AdjudicatorRequirements
Interpreter

User Application

InferenceDB Resolver

Enforcer

Accord + MDint

I1, I2, I3 (ts,tw,tp)

Sensor
Interrupt
Handler

MDint Verfier

Sensor Data

Bookkeeper

Device
OS

Cloud

Figure 1: Design of a tussle-resolving system.

The resolver receives the requirements from the user and
application, and resolves tussles by generating an accord.
The accord defines the time, level, and scope of sensor ac-
cess for the application. To formulate an accord, the resolver
leverages the InferenceDB, a continually updated database
of existing inference algorithms. Section 6 describes the re-
solver, accord, and InferenceDB in detail.

The enforcer, a component of the device OS, implements
the accord by ensuring that all applications sensor accesses
respect the accord’s restrictions. We discuss the enforcer
and its components in Section 7.

4. APPLICATION DATA REQUIREMENTS
Most applications in cyber-physical systems collect net-

worked sensor data, use it to draw inferences about users
or the environment, and perform actions based on these in-
ferences. Previous work has examined allowing applications
to identify their required inferences [39, 31], rather than di-
rectly expressing their sensing requirements. This enables
applications to succinctly describe their requirements, while
the framework performs the required data processing and
delivers the requested inferences.

This methodology has several deficiencies. First, applica-
tion developers are limited to using inferences supported by
the framework. Second, using a different inference algorithm
requires developers to integrate it into the framework (for
example, formulating an inference-module in Beam [39]).
This places additional development and maintenance bur-
dens on the developer. Third, many application developers
want their techniques to remain proprietary, and are reluc-
tant to leverage such frameworks. Finally, the framework
may not incorporate certain application-specific design op-
timizations which the developer wants to employ. Given
these drawbacks, we ask: Is it possible to allow developers
to directly express their sensing requirements?

We survey a range of applications that use sensors across
various platforms [9, 20, 22, 32, 19, 21]. On analyzing the
applications’ sensor access, we observe a few similarities,
which we explain in the context of a few example appli-

: sensor value

tp

Time

tw

ts

tp
tw

ts

Figure 2: Data sampling parameters.

cations. We choose these example applications because of
their diverse categories they represent (healthcare, safety,
and efficiency), and because they process private informa-
tion about their users. The example applications are:

• SleepMon [20, 21]: This application monitors users’
sleep quality using their smartphones. It uses the mi-
crophone to detect “sleep events”, which are used to
create a fine-grained sleep profile, compute sleep effi-
ciency, and relate irregular sleep patterns to possible
causes.

• DriverMode [32, 22]: This application detects when
the user is in a moving vehicle, e.g., a car, and ac-
tivates a driver-mode user experience on the user’s
smartphone. It suppresses non-critical notifications
and informs other users. It uses the accelerometer
to infer the user’s transportation mode, and records
driving periods for visualization.

• TempControl [19]: This application infers the occu-
pancy of a room or a home. The inferred occupancy is
then used to adjust the thermostat to save energy [2,
19, 37]. Typically, this application runs on a home
computer, and interfaces with sensors in the home.

By analyzing these applications we observe that their
sensing requirements, and those of many other applications,
can be expressed using the following set of parameters (il-
lustrated in Figure 2).

Sampling rate (ts): This parameter defines the minimum
time granularity for any batch of sensing values read by the
application. For instance, 0.125 ms (or 8 kHz) for the mi-
crophone readings used by SleepMon [20, 21], 500 ms (or 2
Hz) for TempControl’s PIR readings [19], and 100 ms (or 10
Hz) in the case of DriverMode [32]. Application developers
tune the sampling rate to accommodate their inference al-
gorithm and deployment scenario. For instance, SleepMon’s
inference algorithm performs a spectral analysis of the sen-
sor readings using power spectral density. A sampling rate
which is too infrequent will prevent the algorithm from being
able to differentiate between events (snoring, coughing, mov-
ing), thereby impacting its detection of sleep-related events.
A sampling rate which is too frequent results in resource
waste, including CPU and battery, as the application will
processes a larger volume of readings.

Batch size (tw): Typical sensing applications require a
batch of continuous sensor readings, which are processed
using inference algorithms. This parameter defines the min-
imum size of any batch of sensor readings delivered to the
application, expressed as a time range. For instance, Sleep-
Mon [20] requires sensor readings with ts=0.125 ms, with a
batch size (tw) of 100 ms (or 500 ms [21]), i.e., 800 readings
sampled at 8 kHz. Similarly, TempControl [19] has a tw of
120 seconds. Developers tune the batch size to meet the

needs of their inference algorithm. An overly small batch
size reduces inference accuracy, e.g., lower precision for oc-
cupancy, driving, and sleep detection. Moreover, many al-
gorithms require a given minimum batch size in order to
detect cyclic patterns or other peculiarities in the data. For
instance, inferring if the user is walking using accelerome-
ter readings requires a batch size of at least 3 seconds [23].
In contrast, an overly large batch size decreases algorithm
accuracy because multiple events may co-exist within a sin-
gle batch [32]. It may also lower an algorithm’s sensitivity
because it increases the number of missed events [32].

Periodicity (tp): Most sensing applications perform their
batch inference computations periodically (with a period tp),
rather than continuously. For instance, if TempControl [19]
is exclusively interested in inferring occupancy events that
last longer than 10 minutes, then the occupancy inference
computation (processing a 120 second batch of PIR readings
sampled at 2 Hz) needs to be carried out only once every 10
minutes, meaning tp=600 seconds. DriverMode and Sleep-
Mon use a tp value of 5 minutes [22, 20]. Unlike the previous
parameters, tp affects the minimum length of events that are
to be detected, but does not impact the underlying inference
algorithms’ accuracy.

These sampling rate, batch size, and periodicity param-
eters allow developers to compactly describe a variety of
sensing requirements. We envision that developers would
add this metadata to applications, to be used by the tussle
framework. Each application would require these param-
eters to lie in a certain operating range. Similarly, users’
requirements also map to permissible ranges. The challenge
lies in determining parameter values that satisfy both stake-
holders’ operating ranges.

We are aware that some applications do not cleanly map
into our model of sensing parameters, but still contain
privacy-functionality tussles. A social networking applica-
tion, for instance, may ask the user for a variety of non-
sensor personal information. This private data ostensibly
allows the application to provide additional functionality
(such as friendship recommendations, targeted news arti-
cles and advertisements, and a customized user experience),
at the cost of the user revealing this information to the ap-
plication and possibly its other users. A different approach
would be required to specify the privacy and ‘sensing’ re-
quirements of this type of application. Nevertheless, the
tussle abstraction itself still holds - there is still a tension
between functionality and resource access. Although the
mechanism used to define the tussle may be different, it
should still, given the right mechanism for specification, en-
able a negotiation between the application and the user.

Similarly, there are also applications that do not fit into
our described model despite their use of sensors. One such
example is an application that uses the camera on a device,
perhaps to provide image recognition or product lookup. It
is immediately apparent that timing parameters will have
no effect on such an application (only a single photograph is
required in most cases to provide functionality). That said,
it may be possible for the application to specify alternate re-
quirements - for instance, the compression quality of photo
necessary to make recognition possible. As long as this cri-
teria is meetable, and the application can attach a level of
functionality to different levels of resource availability, then
a negotiation is possible between the involved actors.

We intend to explore these extensions to our framework

in future work.

5. USER PRIVACY REQUIREMENTS
Although the parameters discussed in Section 4 ade-

quately describe the needs of applications, it would be dif-
ficult for the average user to understand how they relate to
privacy and functionality. We therefore require a more in-
tuitive interface for users to be able to specify their privacy
needs.

Many OSes provide users with prompt-based accept-or-
deny sensor controls to express their data privacy require-
ments. Smartphone OSes such as Android, Windows Phone,
and iOS allow the user to grant or deny an application’s
access to sensors either at application installation time (in
Windows Phone and older versions of Android), or when
the sensors are first accessed at runtime (in Android Marsh-
mallow and iOS). These models, however, do a poor job of
informing users about which sensors an application should
access and why. When prompted at install time, users are
conditioned to mindlessly grant all of an application’s sensor
requests [16, 33, 34]. Although runtime prompts typically
add some form of use context for the user, the user may
be unaware of the inferences which their choices will allow
the application to draw, especially if a large amount of time
has passed since the application made previous sensor re-
quests. Moreover, a malicious or poorly written application
could request access to all sensors immediately with no util-
ity context, creating a scenario almost identical to asking
for permissions at install time.

Other work has focused on enabling users to express their
data privacy requirements as a set of rules enforced by the
OS [43, 8]. Rules can be of the form “block sensor S for a
given application [43]”, or can be tuples, (C, S, A), where C
specifies the context under which a given sensor S is ac-
cessed, and A specifies an action (such as perturbation)
which needs to be performed on the sensor data before pro-
viding it to an application [8]. Although this approach pro-
vides greater access control, it burdens the user with the task
of setting rules for a growing number of sensors and appli-
cations. Furthermore, it may not be clear to the user how
the varying rules relate to particular levels of functionality
or privacy.

Chakraborty et al. [8] propose an approach where users
are provided with a high-level inference abstraction to ex-
press their requirements. Users specify prioritized lists of
acceptable and unacceptable inferences. The system then
computes sensor assignments to maximize the accuracy of
desired inferences and minimize the accuracy of undesired
inferences. An inference-based interface was found to be
highly effective. 1

We recognize the value of an inference-based interface for
specifying privacy requirements. We furthermore seek to en-
sure, using other components of our prototype, that a user’s
policy decisions are not violated by future developments in
inference algorithms, nor by increases or decreases in gran-
ularity of sensor access. However, we must still address the
complexity associated with specifying privacy protections on
a per-inference basis, as this may be too complicated or too
time consuming for some users.

1Although we note some additional obstacles which such
approaches should overcome in Section 9, notably that they
should be able to differentiate between different granularities
of sensor access.

Instead, we believe that it may be possible to simplify the
specification of inferences by providing users with access to
an open-source catalogue of trusted privacy profiles, from
which a user may select a desired set of inference policies.
This is akin to “battery profiles” commonly found on mobile
devices and laptop computers. An alternative method would
be to poll users with high-level, privacy-related questions, in
order to build a user-customized privacy profile. A third pos-
sibility would be to provide the user with a per-application
slider and a breakdown of inferences and functionality avail-
able to the application. At one end of the slider, an appli-
cation would have limited sensor access, acquiring fewer in-
ferences at the cost of functionality. At the other end of the
slider, the application would have broad sensor access, pro-
viding improved functionality at the cost of privacy. Based
on feedback from the privacy tussle-management framework
- which would inform the user of inferences the application
could make given its sensor setting - and feedback from the
application over the level of functionality given the user-
imposed limitations, the user could make informed decisions
about his or her privacy policies.

6. TUSSLE RESOLUTION
As described above, users should express their require-

ments using an inference-based control interface, whereas
application developers express application requirements us-
ing a formal description, such as (ts, tw, tp) tuples, for sens-
ing requirements. The resolver (shown in Figure 1) is a
service that processes a given set of applications’ sensing re-
quirements and a set of user’s data privacy requirements to
produce the tussle resolution, referred to as the accord.

Since users express their requirements through inferences,
the resolver contains a requirements interpreter, which inter-
faces with the InferenceDB. The requirements interpreter
maps the the user’s requirements to resource-specific pa-
rameters such as sensor-specific bounds on parameters tw
and tp. The InferenceDB is a service which provides the
requirements interpreter with a mapping of the set of infer-
ences that can be derived from the set of sensor types and
sensing rates. We envision that the InferenceDB would be
hosted by trusted third party providers, perhaps as public-
facing web services in exchange for a fee paid by the user
(or freely from trusted open-source providers). These third
parties would be responsible for updating their respective
InferenceDBs with existing and newly discovered inference
algorithms. The InferenceDB plays the role of an informed
trusted friend who warns users of the potential privacy im-
plications of a particular application’s data requirements.

After the user’s requirements are converted by the require-
ments interpreter, they are provided to the adjudicator. The
adjudicator balances the user’s and application’s require-
ments, and resolves any conflicting requirements according
to the user’s privacy specifications. This process incorpo-
rates the negotiation aspect of the tussle - through the ad-
judicator, the application may desire to inform the user of
the impact of their privacy requirements on functionality.
Based on this feedback, the client can choose to either re-
tain their privacy requirements, or adjust their requirements
and begin the process again. Eventually, the two parties will
reach a mediated solution that works for both in terms of
functionality and privacy.

As sensors and inference algorithms evolve, both the re-
quirements interpreter and adjudicator may need to perform

significant amounts of computation, as they are essentially
solving an optimization problem. Therefore, we envision
hosting the resolver in the cloud, either with a trusted third
party provider, or on a user’s personal server [38].

Applications present their requirements to the tussle
framework at the time of initialization. Similarly, the user
presents his or her preferences to the framework via a suit-
able user interface. The framework then forwards both sets
of requirements to the resolver. Figure 3 illustrates a sample
request.

User: Occupancy-10 min, Activity-30 min,
Sleep-1 hr, ...
App-1: Mic: (8 kHz, 0.125 ms, 1800 s)
App-2: Accelerometer : (10 Hz, 120 s, 300 s)
App-3: PIR: (2 Hz, 60 s, 600 s)

Figure 3: Example resolver requests.

We assume a two-way encrypted channel of communica-
tion between the resolver and the device OS. The resolver
sends the corresponding accord to the device OS, along with
integrity metadata MDint. MDint is computed as follows:
MDint = SigKResolver

priv
(H[Request]||H[Accord]).

As described in Table 2, MDint is a signed hash of the
request and the corresponding accord. MDint ensures in-
tegrity of the accord, prevents replay attacks, and allows the
device OS to determine if an accord matches the last issued
resolver request. This design allows the resolver to be state-
less, ensuring easy scalability for a large number of users
and devices (when hosted as a trusted third party service).

1. H[x]: Cryptographic hash of x
2. SigK [x]: Digital signature of x with the key K
3. Kowner

pub , Kowner
priv : a public-private key pair of owner

4. ||: Concatenation

Table 2: Glossary.

7. RESOLUTION ENFORCEMENT
After an accord has been formulated, its adoption and

enforcement needs to be ensured. The enforcer (shown in
Figure 1) is a service which runs as a part of the device
OS. It ensures that any resource access by any application
conforms to the accord generated by the resolver.

Upon receiving an accord from the resolver, the enforcer
first verifies if the accord matches the current resolution re-
quest issued by the device OS (Figure 3). It then decodes
and stores the accord in memory. To ensure that application
resource accesses respect the accord, the enforcer maintains
bookkeeping information. For instance, for networked sen-
sor data tussles, the enforcer records the types, levels, and
extents of sensor accesses by applications. The enforcer also
handles sensor interrupts which may be passed to waiting
applications. Upon receipt of such an interrupt, the enforcer
consults its bookkeeping information and any accords, and
determines the set of applications to which the data can
be permissibly delivered, e.g., though an asynchronous call-
back. For other resource tussles, we envision that an enforcer
would also encompass a CPU scheduler, memory manager,
a disk manager, and a network manager.

8. FUTURE DIRECTIONS

8.1 Describing Resource Requirements
We provide a way for applications to express their sens-

ing requirements, but a more comprehensive tussle-based
framework could enable applications to express other signif-
icant resource requirements. This includes access to compu-
tational resources, actuators, and even software resources,
such as user-generated content (e.g., photos, and videos),
network ports, and file descriptors. Applications could also
express the durations for which they require access to a re-
source, and the size of their requirement such as % CPU
time, or amount of memory. This implies that the inter-
face between the application and the OS (usually the pro-
cess abstraction) may need to be altered to give the OS a
non-black box view into the application’s consumption of re-
sources. Many modern smartphone OSes, including Android
and Windows Phone, have adopted this approach, with ap-
plications divided into UI-intensive components, e.g., An-
droid activities [1], and computation-intensive components,
e.g., Android services [1]. Unfortunately, these abstractions
only help to implement certain static policies defined by the
OS-provider, such as maximizing battery life. For designing
a tussle-based framework, existing unified resource abstrac-
tions such as Fence [26] may be leveraged. However, they
need to be supplemented with i) a language to allow ap-
plications to freely express their resource requirements, and
ii) policies that resolve more complex resource tussles. This
will allow users to control and reason about resource tussles
in the same manner as privacy tussles.

8.2 Trusted Readings
Our current work assumes that the OS is trusted, and

does not tamper with sensor readings. Trusted readings are
required in many applications such as billing [38] and geo-
fencing [27]. In practice, however, it may be difficult to
guarantee that a particular OS is trusted. Moreover, the
user may want to provide readings that are perturbed or
otherwise modified, for example to spoof readings during
development, or replay previous GPS traces to shield their
current location [8]. Therefore, perturbations to sensor read-
ings by the user, and applications’ desires for unperturbed
readings can also be viewed as a tussle. A possible solu-
tion is to include a noise coefficient with sensor requests,
0 ≤ tn ≤ 1. A coefficient of zero corresponds to unper-
turbed readings, whereas a coefficient of one could corre-
spond to entirely fabricated readings. The resolver can then
balance an application’s requested noise coefficient against
the user’s privacy requirements, while the enforcer ensures
that readings delivered to applications are perturbed to the
agreed upon level.

Existing work has shown that trusted readings can be
provided despite an untrusted OS by securing appropriate
components by using a secure execution mode in modern
CPUs [27]. However, the approach in [27] requires sensor
drivers to be a part of the Trusted Computing Base (TCB),
and thus increases its vulnerabilities [36]. A potential solu-
tion is to partition sensor drivers’ functionality so that only
their security-critical components contribute to the TCB.

8.3 Tussles on a Cloud-Hosted OS
Applications such as Nest [2] use networked sensors de-

ployed in users’ homes and backhaul data to servers in the

cloud which host the application logic. This is problematic
in two ways. First, users’ sensor data needs to be transferred
to the application developer’s server, even though data pro-
cessing can be hosted on devices at home, for example us-
ing a “home hub” [12]-based TempControl [19] application.
Second, the cloud server hosting the application logic has no
means to allow users to express their data privacy require-
ments.

What is needed, therefore, is an instantiation of a tussle-
based framework on the device such as Nest [2]. This frame-
work may coordinate with instantiations on other user de-
vices and/or the cloud server. The challenge therefore lies
in designing a tussle-based framework for such IoT devices.

8.4 Verifiable OS Implementation
A potential direction for building tussle-oriented operat-

ing system frameworks is to use a Unikernel [28]. In this
approach, the OS kernel is specialized to support only a
pre-specified set of applications. Moreover, the entire kernel
is written in a strongly-typed language (OCaml) that allows
the OS’s correctness to be formally proven, in the sense of
always obeying certain high-level assertions. We believe that
tussle accords can be formally expressed in terms of these
assertions, thus a Unikernel that implements a tussle accord
can be trusted to enforce the accord.

9. RELATED WORK
Clark et al. [11] recognize tussles between stakeholders in

the networking space, and outline solutions to resolve them.
Likewise, we propose recognizing tussles among stakeholders
on operating systems on commodity devices, and outline
mechanisms to detect and resolve them.

Information flow control (IFC) is an area of research that
deals with data privacy and integrity, including data that
is jointly owned and operated on by multiple actors. Past
work has shown that IFC techniques can be applied to tra-
ditional operating system abstractions such as file descrip-
tors, with minimal changes to existing applications and ac-
ceptable levels of overhead [24]. Zeldovich et al. demon-
strate how a group of mutually distrustful components can
communicate across physical machines without leaking in-
formation [42]. TaintDroid extends IFC into the Android
runtime, dynamically tracking the flow of sensitive data be-
tween applications [14]. PiOS statically analyzes data flows
in iOS applications in order to detect potential leaks [13],
while PDroid uses static data flow analysis to detect privacy
leakage in Android applications [43]. IFC, while useful for
tracking access to sensitive information, does not necessar-
ily inform users about what types of inferences are being
generated by applications based on their sensor access. It
furthermore does not address a user’s desire to balance an
application’s functionality against privacy. Thus, while in-
formation flow control is an important component for us to
consider, it is not sufficient on its own.

Existing work has proposed additions to OSes to enable
sensor and actuator privacy control, and data resource man-
agement. Several systems have focused on detecting over-
privileged applications, applications which request more sen-
sor access than is needed to achieve their functionality goals,
on smartphones [15, 41]. Spahn et al. [40] design an OS ser-
vice that discovers application-level data objects, e.g., emails
and documents, and provides users with unified object man-
agement. Santos et al. [35] propose a lease-based allocation

of resources on smartphone OSes to enable verifiable ap-
plication behaviour. Haddadi et al. [18] propose a trusted
arbitrator for allowing users to control applications’ access
to historical data, e.g. photos and videos. These approaches
are complementary to ours. They focus on providing mech-
anisms to address various relevant sub-problems, however
they do not recognize tussles between stakeholders, which
are the main cause of these problems. We propose a frame-
work to recognize, detect, and resolve these tussles which can
be further enriched by incorporating these existing mecha-
nisms.

MockDroid [7] provides users with a modified version of
Android which allows them to spoof sensor readings pro-
vided to applications. Likewise, Apex [30] allows Android
users to selectively grant applications sensor permissions
(now an integrated feature of Android Marshmallow) and
impose runtime constraints on those sensors. PMP offers
runtime resource control for iOS applications [6]. PiBox [25]
provides a cross-device sandbox environment that wholly
contains a user’s private data on a per-app basis. While
these applications are spiritually similar to TussleOS (PiBox
and MockDroid in particular acknowledge the fundamental
trade-off between privacy and functionality) they suffer from
shortcomings. MockDroid, for instance, only allows limited
sensor spoofing and full sensor access, and only applies to
explicitly requested resources. PMP does not work for sen-
sors. Although Apex introduces runtime constraints, sensor
readouts are still binary. PiBox stops the leakage of private
information by malicious applications, but provides much
less protection when users opt to share their data. Further-
more, these systems do not provide any feedback to the user
about the implications of their decisions, nor do they al-
low an opportunity for the application and user to negotiate
privacy-functionality trade-offs directly.

ipShield [8] allows users to specify allowed and disallowed
inferences within Android applications. These lists are used
to maximize allowed inference accuracy and restrict disal-
lowed inference accuracy. In practice, this proves to be a
flexible, low-overhead interface for managing data privacy,
but it does not take sensor sampling granularity into consid-
eration. The amount of information revealed by sampling
a sensor at two different granularities can vary significantly.
For instance, an application that accesses the accelerome-
ter to infer if the user is in motion requires a much smaller
time granularity than another application that infers the
user’s physical activity. Because the user receives no inter-
pretable metric conveying the amount of private information
revealed, it may be difficult for them to specify which infer-
ences to allow and disallow for a particular application. Fur-
thermore, ipShield does not inform the user of differences in
levels of functionality when modifying sensor access for an
application. Nevertheless, ipShield serves as a good start-
ing point for building other user-understandable approaches
which balance privacy and functionality.

Michalevsky et al. [29] use a smartphone’s MEMS gyro-
scope to capture users’ speech. They also show that the
ability of an application to capture speech is significantly im-
pacted by the frequency at which the application is able to
poll the gyroscope. This is an explicit example of a scenario
which would be easily managed by a tussle-based framework.
By limiting the application’s access to the sensor, both the
user’s privacy and the application’s core functionality are
preserved.

10. CONCLUSION
Existing OSes lack a principled approach to handling the

privacy implications stemming from newfound networked
sensing and actuation capabilities. Numerous one-off sys-
tems have been conceived to patch existing OSes to han-
dle these capabilities, but they suffer from numerous short-
comings. We advocate that OSes need to recognize privacy
conflicts between different stakeholders accessing system re-
sources, and require suitable software mechanisms and poli-
cies to detect and resolve such tussles. Using sensing appli-
cations as a starting point, we outline the design of a pri-
vacy framework which provides applications and users with
high-level interfaces to express their requirements, detect
conflicting requirements, resolve them, and ensure the im-
plementation of the resolution. Furthermore, we identify
various open problems that need to be solved to instantiate
such an OS framework.

11. ACKNOWLEDGMENTS
Funding for this project was provided in part by Cisco

Systems, the University of Waterloo President’s Scholar-
ship, the David R. Cheriton Graduate Scholarship, the Nat-
ural Sciences and Engineering Research Council of Canada
(NSERC) Alexander Graham Bell Canada Graduate Schol-
arship - Doctoral, the NSERC Discovery Grant, and the
NSERC Discovery Accelerator Supplement.

12. REFERENCES
[1] Android SDK. http://developer.android.com.

[2] Nest. http://www.nest.com/.

[3] Popular Android Apps Leak Sensitive User Data.
https://blog.kaspersky.com/privacy_holes_in_

popular_android_apps/.

[4] Raspberry Pi. https://www.raspberrypi.org/.

[5] The Internet of Things. http:
//share.cisco.com/internet-of-things.html/.

[6] Agarwal, Y., and Hall, M. ProtectMyPrivacy:
detecting and mitigating privacy leaks on iOS devices
using crowdsourcing. In Proc. ACM MobiSys (2013).

[7] Beresford, A. R., Rice, A., Skehin, N., and
Sohan, R. Mockdroid: trading privacy for application
functionality on smartphones. In Proc. ACM
HotMobile (2011).

[8] Chakraborty, S., Shen, C., Raghavan, K. R.,
Shoukry, Y., Millar, M., and Srivastava, M.
ipShield: a framework for enforcing context-aware
privacy. In Proc. USENIX NSDI (2014).

[9] Chen, Z., Lin, M., Chen, F., Lane, N. D.,
Cardone, G., Wang, R., Li, T., Chen, Y.,
Choudhury, T., and Campbell, A. T. Unobtrusive
sleep monitoring using smartphones. In IEEE
PervasiveHealth (2013).

[10] Chin, E., Felt, A. P., Sekar, V., and Wagner, D.
Measuring user confidence in smartphone security and
privacy. In Proc. ACM SOUPS ’12.

[11] Clark, D. D., Wroclawski, J., Sollins, K. R.,
and Braden, R. Tussle in cyberspace: defining
tomorrow’s Internet. In ACM SIGCOMM CCR
(2002).

[12] Dixon, C., Mahajan, R., Agarwal, S., Brush,
A. J., Lee, B., Saroiu, S., and Bahl, P. An

http://developer.android.com
http://www.nest.com/
https://blog.kaspersky.com/privacy_holes_in_popular_android_apps/
https://blog.kaspersky.com/privacy_holes_in_popular_android_apps/
https://www.raspberrypi.org/
http://share.cisco.com/internet-of-things.html/
http://share.cisco.com/internet-of-things.html/

operating system for the home. In USENIX NSDI
(2012).

[13] Egele, M., Kruegel, C., Kirda, E., and Vigna,
G. PiOS: Detecting privacy leaks in iOS applications.
In Proc. NDSS (2011).

[14] Enck, W., Gilbert, P., Han, S., Tendulkar, V.,
Chun, B.-G., Cox, L. P., Jung, J., McDaniel, P.,
and Sheth, A. N. TaintDroid: an information-flow
tracking system for realtime privacy monitoring on
smartphones. ACM TOCS (2014).

[15] Felt, A. P., Chin, E., Hanna, S., Song, D., and
Wagner, D. Android permissions demystified. In
Proc. ACM CCS (2011).

[16] Felt, A. P., Ha, E., Egelman, S., Haney, A.,
Chin, E., and Wagner, D. Android permissions:
User attention, comprehension, and behavior. In Proc.
ACM SOUPS (2012).

[17] Gupta, T., Singh, R. P., Phanishayee, A., Jung,
J., and Mahajan, R. Bolt: Data management for
connected homes. In USENIX NSDI (2014).

[18] Haddadi, H., Howard, H., Chaudhry, A.,
Crowcroft, J., Madhavapeddy, A., and
Mortier, R. Personal data: Thinking inside the box.
arXiv:1501.04737 (2015).

[19] Hailemariam, E., Goldstein, R., Attar, R., and
Khan, A. Real-time occupancy detection using
decision trees with multiple sensor types. In Proc.
ACM SimAUD (2011).

[20] Hao, T., Xing, G., and Zhou, G. iSleep:
unobtrusive sleep quality monitoring using
smartphones. In Proc. ACM SenSys (2013).

[21] Huynh, T., and Schiele, B. Analyzing features for
activity recognition. In Proc. sOc-EUSAI 2005 (2005).

[22] Kansal, A., Saponas, S., Brush, A., McKinley,
K. S., Mytkowicz, T., and Ziola, R. The latency,
accuracy, and battery (LAB) abstraction: programmer
productivity and energy efficiency for continuous
mobile context sensing. In Proc. ACM OOPSLA
(2013).

[23] Karantonis, D., Narayanan, M., Mathie, M.,
Lovell, N., and Celler, B. Implementation of a
real-time human movement classifier using a triaxial
accelerometer for ambulatory monitoring. IEEE
Transactions on Information Technology in
Biomedicine (2006).

[24] Krohn, M., Yip, A., Brodsky, M., Cliffer, N.,
Kaashoek, M. F., Kohler, E., and Morris, R.
Information flow control for standard OS abstractions.
In Proc. ACM SIGOPS Operating Systems Review
(2007), vol. 41, pp. 321–334.

[25] Lee, S., Wong, E. L., Goel, D., Dahlin, M., and
Shmatikov, V. πbox: a platform for
privacy-preserving apps. In Proc. USENIX NSDI
(2013).

[26] Li, T., Rafetseder, A., Fonseca, R., and
Cappos, J. Fence: Protecting device availability with
uniform resource control. In USENIX ATC ’15 (July
2015), USENIX, pp. 177–191.

[27] Liu, H., Saroiu, S., Wolman, A., and Raj, H.
Software abstractions for trusted sensors. In Proc.
ACM MobiSys (2012).

[28] Madhavapeddy, A., Mortier, R., Rotsos, C.,
Scott, D., Singh, B., Gazagnaire, T., Smith, S.,
Hand, S., and Crowcroft, J. Unikernels: Library
operating systems for the cloud. In ACM SIGPLAN
Notices (2013), vol. 48, ACM, pp. 461–472.

[29] Michalevsky, Y., Boneh, D., and Nakibly, G.
Gyrophone: Recognizing speech from gyroscope
signals. In Proc. USENIX SEC (2014).

[30] Nauman, M., Khan, S., and Zhang, X. Apex:
extending android permission model and enforcement
with user-defined runtime constraints. In Proc. ACM
ASIA CCS (2010).

[31] Nirjon, S., Dickerson, R. F., Asare, P., Li, Q.,
Hong, D., Stankovic, J. A., Hu, P., Shen, G.,
and Jiang, X. Auditeur: A mobile-cloud service
platform for acoustic event detection on smartphones.
In ACM MobiSys (2013).

[32] Reddy, S., Mun, M., Burke, J., Estrin, D.,
Hansen, M., and Srivastava, M. Using mobile
phones to determine transportation modes. ACM
TOSN (2010).

[33] Roesner, F., Kohno, T., Moshchuk, A., Parno,
B., Wang, H. J., and Cowan, C. User-driven access
control: Rethinking permission granting in modern
operating systems. In Proc. IEEE SP (2012).

[34] Roesner, F., Molnar, D., Moshchuk, A., Kohno,
T., and Wang, H. J. World-driven access control for
continuous sensing. In Proc. ACM CCS (2014).

[35] Santos, N., Duarte, N. O., Costa, M. B., and
Ferreira, P. A case for enforcing app-specific
constraints to mobile devices by using trust leases. In
Proc. USENIX HotOS (2015).

[36] Santos, N., Raj, H., Saroiu, S., and Wolman, A.
Using arm trustzone to build a trusted language
runtime for mobile applications. In Proc. ACM
ASPLOS (2014).

[37] Scott, J., Brush, A. J. B., Krumm, J., Meyers,
B., Hazas, M., Hodges, S., and Villar, N.
PreHeat: Controlling home heating using occupancy
prediction. In Ubicomp (2011).

[38] Singh, R. P., Keshav, S., and Brecht, T. A
cloud-based consumer-centric architecture for energy
data analytics. In e-Energy (2013).

[39] Singh, R. P., Shen, C., Phanishayee, A., Kansal,
A., and Mahajan, R. A case for ending monolithic
apps for connected devices. In Proc. USENIX HotOS
(2015).

[40] Spahn, R., Bell, J., Lee, M. Z., Bhamidipati, S.,
Geambasu, R., and Kaiser, G. Pebbles:
Fine-grained data management abstractions for
modern operating systems. In Proc. USENIX OSDI
(2014).

[41] Xu, W., Zhang, F., and Zhu, S. Permlyzer:
Analyzing permission usage in android applications.
In Proc. IEEE ISSRE (2013).

[42] Zeldovich, N., Boyd-Wickizer, S., and Mazieres,
D. Securing distributed systems with information flow
control. In Proc. NSDI ’12 (2008), vol. 8, pp. 293–308.

[43] Zhang, P. H., Li, J. Z., Shao, S., and Wang, P.
Pdroid: Detecting privacy leakage on android. In

Applied Mechanics and Materials (2014).

	Introduction
	Design Goals
	Architecture Outline
	Application Data Requirements
	User Privacy Requirements
	Tussle Resolution
	Resolution Enforcement
	Future Directions
	Describing Resource Requirements
	Trusted Readings
	Tussles on a Cloud-Hosted OS
	Verifiable OS Implementation

	Related Work
	Conclusion
	Acknowledgments
	References

