
What do parrots and BGP routers have in common?

David Hauweele
∗

,
Bruno Quoitin

University of Mons (UMONS)
{first.last}@umons.ac.be

Cristel Pelsser
†

University of Strasbourg
pelsser@unistra.fr

Randy Bush
Internet Initiative Japan (IIJ)

randy@psg.com

ABSTRACT
The Border Gateway Protocol propagates routing informa-
tion accross the Internet in an incremental manner. It only
advertises to its peers changes in routing. However, as early
as 1998, observations have been made of BGP announcing
the same route multiple times, causing router CPU load,
memory usage and convergence time higher than expected.

In this paper, by performing controlled experiments, we
pinpoint multiple causes of duplicates, ranging from the lack
of full RIB-Outs to the discrete processing of update mes-
sages. To mitigate these duplicates, we insert a cache at
the output of the routers. We test it on public BGP traces
and discuss the relation of the cache performance with the
existence of bursts of updates in the trace.

1. INTRODUCTION
The Border Gateway Protocol [1] (BGP) is the de facto

standard used to exchange inter-AS routing information on
the Internet. Its correct and scalable behavior is critical to
the operation of the Internet. One of the keys to BGP scala-
bility is the use of incremental routing updates: only changes
in destination prefix reachability are advertised. These chan-
ges include the reachability of a new prefix, the unreachabil-
ity of an existing destination (withdrawal), or a modification
of the path attributes associated with a destination. Path
attributes are involved in routing decisions and also ensure
proper protocol behavior such as avoiding routing loops. Ac-
cording to the protocol specification, a BGP speaker should
not issue an update containing the same BGP information
as was most recently advertised for the prefix.

Anomalous BGP behavior has been observed as early as
1998 [2]. Based on a 9 months trace of the BGP traffic ex-
changed between backbone networks, Labovitz et al. showed
lack of aggregation and high routing instability with up to
99% of exchanged routing information not being related
to topological changes. In particular, they observed the
occurrence of redundant BGP update messages that they
called duplicate updates. At that time, most of the dupli-
cates where due to bogus stateless BGP implementations.
The authors noted that the observed high level of instabil-
ity was detrimental to the operations of the Internet, caus-
ing high router CPU load, making routers unresponsive and
in the worst cases leading to packet or routing information
losses. In addition, they may sometimes trigger unreacha-
bility when interacting with route flap damping [3].

∗David started this work during his internship at IIJ.
†The credits go to IIJ for supporting Cristel’s work.

Several studies later revisited BGP dynamics [4–8] and
its impact on router CPU load [9], some focused on BGP
duplicates. Although the number of pathological updates
declined over time, duplicates still constitute a significant
part of the BGP traffic with up to 15% of the updates ob-
served at RIPE monitors in 2006 [5]. It was later shown
that the duplicate problem is even worse for routers in the
core of the Internet with the portion of duplicates varying
from 7% to 60% in 2008 [7]. More recently, in 2009, Park
et al. [6] studied over 90 RouteViews/RIPE monitors and
showed that the duplicates make up 13.5% of the aggregated
BGP traffic. Routers can receive up to 86.4% of duplicates
during their busiest time. These previous works show that
duplicates are a continuing problem. We confirm this ob-
servation by looking at all sessions from EQUINIX, ISC,
LINX and WIDE RouteViews collectors from 2009 to 2014.
48.5% of the traces we observed had more than 10% of du-
plicates. The traces also display a high variability with an
average of (18.84 ± 22.31)% duplicates. Finally, [6] hinted
that a change in attributes attached to iBGP routes may
trigger eBGP duplicates. To the best of our knowledge, so
far, no thorough study has explained their origin or tried to
mitigate the problem.

In this paper, we make the following contributions:

• We discuss in Section 2 the causes of today’s dupli-
cates. Although the majority of duplicates in 1998
were bogus route withdrawals, this is not the case
today (less than 0.5% on almost all traces). To un-
derstand what causes duplicates, we inject carefully
crafted BGP updates into a router and we correlate the
input and output BGP traffic. Based on this, we iden-
tify different causes for duplicates. Most duplicates
today are due to implementions trading off between
memory footprint and statefulness.

• In Section 3, we devise a caching mechanism that mit-
igates duplicates. The benefit of using a cache is that
the amount of memory used can be controlled. We
evaluate the efficiency of our caching mechanism on
several real world BGP traces, using several replace-
ment strategies. We show that our cache significantly
reduces duplicates for prefixes in the default free zone
even with a small cache size.

2. THE ORIGIN OF DUPLICATES
To investigate the origin of BGP duplicates, we follow two

different approaches. First we look at a router that receives
live BGP feeds. We capture all the BGP traffic and we man-

ually correlate duplicates observed in the outbound traffic
with messages in the inbound traffic. This is an approach
similar to that used by Park et al. in [6] that gives us some
initial insight on potential causes for duplicates.

Second, we perform a fully controlled experiment where
we inject crafted sequences of messages into a test router.
We then look for duplicates in the output messages. Our
experiment allows to confirm the hypotheses of Park et al.
on the origin of duplicates. We also go much further as we
establish three additional causes for duplicates.

This section explains our methodology and subsequent ob-
servations.

2.1 Definitions
We define a duplicate as a redundant prefix advertise-

ment with the same attributes as the most recent update
for this prefix on the same session and not interleaved with
a withdrawal or a session reset. This definition is stricter
than the one in [2] where an update is considered a dupli-
cate (AADup) if its AS-Path and Next-Hop do not change.
When we count duplicates, we include the initial duplicated
route advertisement.

We also define the ratio of duplicates as the number of
duplicates (including the original messages) over the total
number of messages. With this definition, a trace where
every advertisement is duplicated will have a ratio of 100%.

2.2 Real BGP feed experiment
The objective of this experiment is to manually investigate

some occurrences of duplicates by correlating the duplicates
observed at the output of a router with the messages it re-
ceives. Our setup is shown in Fig. 1. Devices r0, r1 (Cisco)
and r2 (Juniper) are real routers while mon0 is a dedicated
host running a software BGP router (Quagga).

Figure 1: Setup for the I/O correlation.

The router under test is r2. It receives BGP messages
from r0 and r1 through input eBGP sessions. After selecting
its best routes, r2 sends BGP messages over a single output
eBGP session to mon0. The routes learned by r0 and r1
are from real BGP feeds received in September 2013 for a
duration of 23 days.

The mon0 host captures all the BGP messages received
on the mirror and output sessions. The mirror sessions
(dashed lines on Fig. 1) allow to capture the input routes
advertised by the upstream routers r0 and r1. To reduce
timing differences between the input and mirror sessions,
both sessions are placed in the same update group on r0 and
r1. The Minimum Route Advertisement Interval (MRAI) is
also set to zero on these routers.

The messages are stored in MRT format. MRT records
route advertisements, route changes and route withdrawals.
Each record contains a timestamp and the path attributes.

TCP-level traces of all the BGP messages received are also
captured. This allows us to validate the MRT capture and
dwelve deeper in the BGP message packet details e.g. to
check the ordering of attributes.

We describe in the following paragraphs two common cases
we observed. The first case involves the Multi-Exit-Discri-
minator (MED) attribute while the second case involves a
rewritten Next-Hop. We do not know the exact frequency
of these cases, as we have to manually extract the data.

(a) MED case (b) Next-Hop case

Figure 2: Common causes of duplicates. Timeline of the
updates seen at the output of each router.

In the MED case, illustrated in Fig. 2a, we believe the
duplicate is caused by a MED attribute stripped at the out-
put of r2. Three different input routes are involved, all for
the same IPv4 prefix. The first route, A, has an AS-Path of
length 5 and a MED value of 0. The second route, B, has
the same AS Path as A but a MED value of 2. The third
route, C, has an AS Path of length 6 and a MED value
of 0. At time 0ms, r2 announces route A learned from r0.
Before announcing A, r2 updates the AS-Path and strips
the MED, which produces route A′. At time 10ms, r1 an-
nounces route B to r2. The decision process of r2 ranks
route A better than route B, causing no change in r2’s best
route. At time 492ms, r0 announces to r2 route C which
has a longer AS-Path. Route C implicitly withdraws route
A. As a consequence, r2 now selects route B as best. Be-
fore announcing B, r2 strips the MED value, producing B′.
Output routes A′ and B′ are equal, hence B′ is a duplicate
of A′.

In the case illustrated in Fig. 2b, we believe the duplicate
is caused by the next-hop attribute. This case involves two
routes. Route A announced first by router r1, is selected
as best by r2 and announced on the output session at time
0ms. Before announcing route A, r2 rewrites the next-hop
and emits route A′. At time 801ms, router r1 explicitly
withdraws route A. At time 802ms, router r0 announces
route B although it does not trigger any change in r2 yet.
Finally, at time 803ms, router r2 selects route B as best.
Before announcing route B, r2 rewrites the next-hop value
with its own IP address, leading to route B′. Routes A and
B only differ by their next-hop (resp. r1 and r0), hence
routes A′ and B′ are identical.

2.3 Controlled experiment
To confirm the hypotheses of the previous section, we per-

form the same input/output matching in a fully controlled
experiment. We systematically test a large set of situations
that may not have appeared in the setting with a real, live
BGP feed. We are able to find additional causes of dupli-
cates and pinpoint more precisely the reasons behind these
duplicates.

The setup depicted in Fig. 3 is similar to the previous
experiment except we use a machine inj0, running Linux,
to inject crafted updates to the router under test, r0, and
another to capture its output. Router r0 is a Cisco 7200
running IOS v15.3. On inj0, we use ExaBGP [10] to inject
synthetic updates. The monitoring host mon0 collects the
routes observed on the output and mirror sessions with a
Quagga BGP daemon and with tcpdump. The mirror ses-
sion is used to validate inj0’s program. We check the ability
of this program to send BGP messages accurately. We mea-
sure that the minimum interval between two consecutive
updates sent by ExaBGP is 1ms.

Figure 3: Setup for the injection.

Table 1 summarizes the results of the injection experi-
ment. Due to space limitations, only results for a small
number of test cases are presented. For each experiment,
the first column shows the average delay between messages
observed on the input and its standard deviation. Second
column shows the same information for the output. The last
column shows the ratio of duplicates. That is, the number
of duplicates including the initial update over the number
of updates (see Section 2.1).

Test case Input (ms) Output (ms) Dup.

NotVisible – – 100%

RFlap (1 ms) 1.23± 0.50 3.47± 3.46 69.0%

RFlap (2 ms) 2.07± 0.39 2.84± 0.99 25.9%

RFlap (3 ms) 3.07± 0.44 3.06± 0.48 0.1%

AFlap (1 ms) 1.22± 0.69 3.74± 17.25 95.1%

AFlap (2 ms) 2.07± 0.36 2.07± 0.10 4.7%

AFlap (3 ms) 3.07± 0.44 3.06± 0.09 0.1%

Table 1: Results of selected injection test cases.

2.3.1 Internal / non-transitive / filtered attributes
This first set of experiments (NotVisible) considers the

case of attributes whose changes should not be visible from
the outside of an AS as they are either internal, non-transitive
or filtered/rewritten by output policies. The objective of
these experiments is to test whether or not such attributes
could cause duplicate routes to be sent by the router.

For this purpose, we repeatedly send a sequence of 2 route
updates (A,B) for the same destination prefix. Route B dif-
fers from route A for only a specific internal / non-transitive
/ filtered attribute. The expected behavior is as follows.
When route A is received, it is selected as best as there is

no other choice. It is then propagated on the output ses-
sion. When route B is received, it replaces route A (implicit
withdraw). Route B should not be propagated to the out-
put session as it differs from route A only by an attribute
that is either internal, non-transitive, or removed by a filter.
Hence, on the output session, routes A and B are identical.

We observe a duplicate ratio of 100% for experiments in
this class, as shown in Table 1 for the NotVisible test case.
The router was not able to detect that the second route was
a duplicate of the previous. We explain this behavior on the
statelessness of the BGP implementation.

These results held for the following attributes: MED, Lo-
cal Pref, Cluster List, and Originator ID. We also observed a
100% duplicates ratio for non-transitive Community values,
for Community values stripped by outgoing policies and for
rewritten Next-Hop (as already observed in Section 2.2).

2.3.2 Fast flapping route
In a second set of experiments (RFlap) we investigate the

impact of a flapping route on the generation of duplicates.
The experiment relies on the repetition of a simple sequence
of 2 BGP updates (A,W) for the same prefix. A announces
a route while W withdraws it.

The objective of this experiment is to trigger duplicates
by forcing a route to change multiple times before the router
has the opportunity to propagate it. To understand this be-
havior, we need to refine our model of how a router generates
updates. When a route towards a prefix changes, the main
BGP process does not send an update immediately. Instead,
this task is delegated to a separate thread that periodically
reads the RIB and advertises the routes marked as changed.

The following scenario illustrates how the transmission of
a duplicate update can be caused. When the first Announce
is received, the route is marked as changed in the RIB. The
RIB is then scanned and an update is sent. Then, the With-
draw is received and the route is again marked as changed.
However, before the RIB is scanned, the third message (sec-
ond Announce) is received and the route is again marked as
changed. When the RIB is scanned, the second Announce,
identical to the first one is sent. It is a duplicate as the
router did not have time to send a Withdraw between the
two Announces.

We repeat this experiment with increasing delay between
updates: 1ms, 2ms and 3ms. The results are in Table 1
for test case RFlap. We observe that with a 1ms interval,
almost 70% of output updates are duplicates. When the
interval between input updates increases, the ratio of du-
plicates decreases. With a 2ms interval, the ratio is almost
26% and at 3ms, there are almost no duplicates.

We also tested the impact of the MRAI on the generation
of duplicates. We conducted the same experiment with a
larger interval of 2 seconds and a MRAI set to 6 seconds.
With this experiment we still generated more than 30% of
duplicates.

2.3.3 Flapping attribute
This third set of experiments (AFlap) looks at flapping at-

tributes. The principle is identical to the RFlap experiment
except that the second message is not a withdraw but an
update with a transitive attribute that flaps from one value
to another and back. As an example, we present the results
for routes where the origin AS in the AS-Path has value x in
the first and third updates and has value y 6= x in the sec-

ond update. We see in Table 1 for the AFlap test cases that
the ratio of duplicates decreases with an increasing interval
between the input BGP messages.

The explanation for these results is analogous to the RFlap
experiment. When the interval between messages is small,
the router marks the route as changed after the second mes-
sage, but the third message, reversing the second update,
is received before the second message is propagated down-
stream.

3. MITIGATING DUPLICATES
In Section 2, we found several causes explaining the gen-

eration of duplicates. According to the BGP specification,
such duplicates should not appear. When a router adver-
tises a route for a given prefix, it should store this route in
the RIB-Out associated with the peer. When it later ad-
vertises a route for the same prefix, it looks at the current
entry in the RIB-Out. If the current entry is the same as
the new advertisement, the router does not send it because
it would be a duplicate update.

We found out that although most router implementations
support a RIB-Out, the implementation might be partial or
operators might disable it to spare memory, especially on
older hardware. Some vendors [11] explicitly recommend to
disable the RIB-Out when the router has a large number of
peers.

For this reason, we need to devise a solution that is not a
full RIB-out but that still significantly reduces the number of
BGP duplicates. This new mechanism must come at a lower
cost than a RIB-Out in terms of memory consumption.

To obtain a baseline on the possible load reduction, we
count the legitimate updates after filtering all duplicates.
We compare this count to the number of updates in the orig-
inal trace. We use a BGP trace obtained from the Equinix
RouteViews collector and focus on the session with peer
AS5769 (EQUIX-1). Fig. 4 shows two 12 hours excerpts
of this session starting on 2013-9-17 at 0:00 (left) and 2013-
9-18 at 4:00 (right). The Figure shows the total amount
of updates received during the last hour (dark gray) and
the same information after all duplicates have been filtered
(light gray). On the left the trace has a relatively low rate
of duplicates. We observe an average of 5,188 duplicates per
hour. By filtering all duplicates, the number of updates on
this period is reduced by an average factor of 1.62. On the
right the trace features two large spikes of updates. On the
largest spike, we count 5.46∗105 duplicates. By filtering all
duplicates, the number of updates in this spike is reduced
by a factor of 5.08.

We observe that a significant reduction in BGP traffic can
be achieved by filtering duplicate updates. If CPU usage is
proportional to the number of updates, sizable improvement
in performance can be expected by getting rid of duplicates
especially on small routers with limited CPU.

3.1 Caching router
Instead of a RIB-Out, we propose a small cache at the out-

put of the router which can significantly reduce the number
of duplicates at a far less memory cost. The advantage of
this solution is that it can easily be added to the output of a
router with little modifications of the BGP implementation.

A cache at the output of the router works similarly to a
RIB-Out but using less memory. When a cache reaches its
maximum capacity, it must remove one of its entries to add

N
u
m

b
e
r

o
f

u
p
d
a
te

s

Time (hours)

Original
Filtered

0

5k

10k

15k

20k

25k

30k

 48 50 52 54 56 58 60

N
u
m

b
e
r

o
f

u
p
d
a
te

s

Time (hours)

Original
Filtered

0

100k

200k

300k

400k

500k

600k

700k

800k

900k

 76 78 80 82 84 86 88

Figure 4: Two excerpts of the EQUIX-1 trace. Low rate
of duplicates on the left. Spikes of duplicates on the right.
We compare the original trace to the same trace with all
duplicates filtered.

Name Eviction strategy
lru / mru Least/most recently queried entry.
lrh / mrh Least/most recently hit entry.
lfu / mfu Least/most frequently queried entry.
lfh / mfh Least/most frequently hit entry.
random Random entry.

Table 2: Eviction strategies

a new prefix. There are multiple ways to choose which prefix
to remove when the cache is full. These selection methods
are called eviction strategies. A cache is defined by its size
and its eviction strategy.

In our case, the cache can be viewed as an Abstract Data
Type (ADT) with the following operations: query, remove
and clear. The query operation tells if an entry for a given
key and value exists. If the given value is different from the
entry in the cache, the entry is updated. If the cache does
not contain an entry for this key, it adds this new entry
to the cache. When the size reaches the cache limit, the
cache eviction strategy comes into play. An entry is removed
before the addition of the new entry to the cache. These
two cases are considered miss queries. Instead, if the cache
contains an entry for this key with the same value, the query
is considered a hit.

The remove operation takes a key and if it exists, removes
the associated entry from the cache. The clear operation
removes all entries from the cache.

When the router advertises a given prefix and set of at-
tributes, it queries the cache with the prefix as the key and
the set of attributes as the value. In the case of a hit, the
advertisement is a duplicate caught by the cache, and the
router inhibits the advertisement. In the case of a miss, an
advertisement is sent to the peer. When the router with-
draws a given prefix, it removes the cache entry with the
prefix as key and sends the withdraw to the peer. Finally
when the router opens or reopens a session, the cache con-
tent is cleared and the router sends an open message to the
peer.

3.2 Evaluation methodology
We assess the performance of the cache with the differ-

ent eviction strategies listed in Table 2. The random cache

uses a pseudo random number generator to select an entry
to remove. We use this strategy as a baseline to determine
if other strategies are able to exploit characteristics of the
input trace or if there is no specific pattern to exploit. Any
such strategy should perform better in average than the ran-
dom strategy.

In order to test the performance of the cache, we replay
through the cache a previously captured trace. The cache
then filters the duplicates. Since time does not matter for
the eviction strategy, the cache can replay the trace without
taking into account the elapsed time between each message.
As a result it is possible to simulate the behavior of the
cache on a captured trace much more rapidly than playing
it directly on a router.

We use the Minimum Collection Time [12] (MCT) algo-
rithm to accurately identify the start and duration of the
routing table transfers in the BGP trace. We add an im-
plicit OPEN message at the beginning of each detected ta-
ble transfer so that updates within the table transfer do not
count as duplicates.

3.3 Dataset
We measured the updates rate and duplicates ratio of sev-

eral sessions at the RouteViews collectors from 2009 to 2014.
We observed that the duplicate ratio was higher than 10%
on 48.5% of the traces. The quantity of updates and dupli-
cates also varies greatly from one session to another. The
average rate of updates and duplicates per week across all
traces observed in 2014 is of (3.6 ± 10.8) millions updates
and (1.0± 3.7) millions duplicates respectively.

In order to take this variability into account, we apply the
cache on three different sessions obtained from RouteViews
collectors during one week period. We choose these three
sessions as they contain a significant number of updates (> 1
million/week) but exhibit 3 extreme behaviours for what
concerns the duplicates. Fig. 5 shows the hourly number of
duplicates over time for these three traces.

EQUIX-1 EQUIX-2 WIDE
Peer ASN 5769 2914 7500
Start 2013-09-15 2014-10-15 2013-09-15
End 2013-09-22 2014-10-22 2013-09-22
Updates 4.5 ∗ 106 1.55 ∗ 107 1.2 ∗ 106

Duplicates 59.38% 98.36% 2.17%
Spikes Large No Small

Table 3: Characteristics of three different traces.

Table 3 summarizes the characteristics of the traces. The
number of updates and the ratio of duplicates observed vary
greatly from one trace to another. The first trace, EQUIX-1,
exhibits a large number of updates (4.5∗106) and a high ratio
of duplicates (59.38%), a large fraction of which (41%) visi-
ble as two large spikes of duplicates. In comparison EQUIX-
2 has a higher number of updates (1.55 ∗ 107) and a higher
ratio of duplicates (98.36%) but displays no major spike.
Finally the WIDE trace has a very low ratio of duplicates
(1.2 ∗ 106) and does not contain any large spike.

3.4 Results
We apply the cache on the WIDE and EQUIX-1 traces

presented in Section 3.3. We also apply the cache on the
third trace, EQUIX-2 with a fixed size of 65k entries and

N
u
m

b
e
r

o
f

d
u
p
li
c
a
te

s

Time (hours)

1

10

100

1k

10k

100k

1M

10M

 0 24 48 72 96 120 144 168

EQUIX-1

EQUIX-2

WIDE

Figure 5: Three traces with different duplicates ratio. Each
point shows the number of duplicates seen during the last
hour.

WIDE EQUIX-1
Cache 32k 65k 32k 65k

No cache 2.172% 59.38%

lfh 1.351% 0.885% 49.14% 45.50%
lfu 1.324% 0.818% 49.09% 45.45%
lrh 0.040% 0.009% 42.91% 42.27%
lru 0.039% 0.016% 42.90% 42.25%
mfh 1.556% 1.121% 53.85% 50.30%
mfu 0.830% 0.173% 52.97% 48.17%
mrh 1.555% 1.078% 53.34% 49.68%
mfu 1.518% 1.014% 52.93% 49.04%

random 0.042% 0.020% 42.98% 41.87%

Table 4: Percentage of duplicates at the output of the
EQUIX-1 and WIDE traces for different cache eviction
strategies and sizes expressed in number of different routes.

the lru strategy. These traces were captured at different
locations and time. They show different behaviours against
which we test our solution.

Table 4 summarizes the percentage of duplicates found
at the output of the WIDE and EQUIX-1 traces for two
cache sizes, 32768 (32k) and 65536 (65k) different routes,
and multiple strategies. The first line gives the duplicate
ratio of the original trace (no cache applied). For the WIDE
trace, the lru and lrh eviction strategies provide the best
results. The best cache, lrh, reduces the original duplicate
ratio by a factor 241. Further, the larger cache provides
better results. In the case of the WIDE trace, the lru cache
is 2.44 times as effective in filtering the duplicates with a
cache that is twice as large.

On the EQUIX-1 trace, the cache performs poorly. With
a 32k cache, the best results are achieved with the lru strat-
egy. However, the output duplicate ratio remains high, at
42.9%. Doubling the cache size does not provide as much
benefit as with the WIDE trace. Moreover, a striking result
is that in the case of the large cache, the random eviction
performs better than the other techniques. This indicates
that the eviction strategies are not able to properly exploit
the characteristics of the trace.

These results suggest that a higher duplicate ratio inhibits
the performance of the cache. However, when we apply the
lru cache of 65k on the EQUIX-2 trace, which exhibits a

higher duplicates ratio than EQUIX-1, the duplicate ratio
drops from 98.36% to 5.83%. This reduces the number of
updates for the trace by a factor of 50.

This shows that a cache is able to filter a session with
a very high number of duplicates. I.e., the performance
does not depend on the number of duplicates but rather on
other characteristics of the trace. Actually, it depends on the
number of distinct prefixes at the origin of those duplicates.
During the EQUIX-2 trace this number stays at an average
of 1000 prefixes per hour. During the EQUIX-1 trace this
number stays at the same value most of the time. However
when the largest spike of duplicates occurs more than 2∗105

distinct prefixes are involved during less than one hour. As
a result the cache did not retain most of the route changes
occurring during this period. Hence subsequent duplicates
caused by these routes were not filtered by the cache.

3.5 Discussion
Although a cache is effective in filtering feeds with a high

ratio of duplicates (e.g. EQUIX-2), we observed that spikes
of updates involving a large number of distinct prefixes are
detrimental to the performance of the cache. These spikes
can have multiple origins. First, spikes of updates can be
caused by large routing events beyond the router. Second,
spikes can be caused by routing table transfers following a
session reset or a change in outbound policies. It is indeed
common for network operators to prompt a table trans-
fer with a ROUTE REFRESH message in order to apply
changes in their inbound policies. However spikes in this
second category must have been filtered by the MCT algo-
rithm applied beforehand.

While we can explain the origin of spikes, we do not know
if these spikes represent a frequent feature of the BGP ses-
sions. We now measure the maximum spike size in term
of distinct prefixes for all RouteViews sessions we observed
during the year 2014. We also apply a lru cache of 65k
entries on all these traces to map the performance of the
cache to the size of the spikes observed in the sessions. The
sample size for all measured sessions is of 1339 traces.

We define attenuation as the ratio of the number of dupli-
cates seen in the original trace over the number of duplicates
seen after the cache. The average attenuation of duplicates
for all observed traces is 300.47. If we distinguish the traces
by the size of their maximum spikes, the average attenua-
tion for traces with spikes larger and smaller than the size
of the cache are 1.26 and 370.06 respectively.

The existence of updates spikes can negatively impact the
possibility to mitigate the duplicates. We measured the
presence of spikes among all observed sessions in 2014. For
this purpose, we consider there is a spike in a trace when
more than 65k distinct prefixes at the origin of future du-
plicates are transferred in less than one hour. According to
this definition, 11.73% of the traces displayed large spikes of
duplicates.

4. CONCLUSION
Redundant consecutive BGP announcements consume un-

necessary bandwidth and CPU in routers. In addition, these
messages delay the propagation of useful routing informa-
tion. We observed that BGP sessions exhibit different be-
haviors. For some session the number of duplicates is low.
But other sessions can exhibit a very high ratio of dupli-
cates. We identified large spikes of duplicates in 11.73% of

the sessions we observed in 2014. This may be a problem
on chatty sessions.

We then identified three causes of duplicates: changes in
attributes that are not propagated further, flapping of routes
or attributes and, finally, incorrect implementations for sets
in AS-Paths. We verified these causes by performing thor-
ough controlled experiments.

To mitigate the problem we propose use of a cache to find
the right trade-off between additional memory consumption
and the reduction of duplicates. We show that the perfor-
mance of a cache highly depends on the characteristics of
the BGP trace, in addition to the eviction strategy. While
a cache is suitable on some traces, it is not always the
case. The current trend of pushing control functions out-
side the router, to devices that are not as limited memory-
wise, opens the door to full Adj-RIB-Outs and thus enable
to avoid using pretty hacks to get rid of BGP duplicates
completely in the future.

5. REFERENCES
[1] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway

Protocol 4 (BGP-4),” RFC 4271, Jan. 2006.

[2] C. Labovitz, G. R. Malan, and F. Jahanian, “Internet
routing instability,” IEEE/ACM Transactions on
Networking, vol. 6, no. 5, pp. 515–528, 1998.

[3] C. Pelsser, O. Maennel, P. Mohapatra, R. Bush, and
K. Patel, “Route flap damping made usable,” in
Passive and Active Measurement, 2011, pp. 143–152.

[4] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian,
“Delayed internet routing convergence,” ACM
SIGCOMM CCR, vol. 30, no. 4, pp. 175–187, 2000.

[5] J. Li, M. Guidero, Z. Wu, E. Purpus, and
T. Ehrenkranz, “BGP routing dynamics revisited,”
ACM SIGCOMM CCR, vol. 37, no. 2, pp. 5–16, 2007.

[6] J. H. Park, D. Jen, M. Lad, S. Amante, D. McPherson,
and L. Zhang, “Investigating occurrence of duplicate
updates in BGP announcements,” in Passive and
Active Measurement, 2010, pp. 11–20.

[7] A. Elmokashfi, A. Kvalbein, and C. Dovrolis, “BGP
churn evolution: a perspective from the core,”
IEEE/ACM Transactions on Networking, vol. 20,
no. 2, pp. 571–584, 2012.

[8] A. Elmokashfi and A. Dhamdhere, “Revisiting bgp
churn growth,” ACM SIGCOMM CCR, vol. 44, no. 1,
pp. 5–12, Dec. 2013.

[9] S. Agarwal, C. Chuah, S. Bhattacharyya, and C. Diot,
“Impact of BGP dynamics on router CPU
utilization,” in Passive and Active Network
Measurement, 2004, pp. 278–288.

[10] “ExaBGP,”
http://github.com/Exa-Networks/exabgp, 2014.

[11] “EXOS,” http://documentation.extremenetworks.
com/exos commands/EXOS All/
EXOS Commands All/r disable-bgp-adjribout.shtml,
2015.

[12] P.-C. Cheng, B. Zhang, D. Massey, and L. Zhang,
“Identifying BGP routing table transfers,” Computer
Networks, vol. 55, no. 3, pp. 636–649, 2011.

