
New Kid on the Block: Network Functions Virtualization:

From Big Boxes to Carrier Clouds

Leonhard Nobach Oliver Hohlfeld David Hausheer
TU Darmstadt RWTH Aachen University TU Darmstadt

lnobach@ps.tu-darmstadt.de oliver@comsys.rwth-aachen.de hausheer@ps.tu-darmstadt.de

This article is an editorial note submitted to CCR. It has NOT been peer reviewed.
The authors take full responsibility for this article’s technical content. Comments can be posted through CCR Online.

ABSTRACT
Network management currently undergoes massive changes towards
realizing more flexible management of complex networks. Recent
efforts include slicing data plane resources by network (link) virtu-
alization and applying operating system design principles to Soft-
ware Defined Networking to rethink network management. Driven
by network operators, network management principles are currently
envisioned to be even further improved by virtualizing network
(middlebox) functions. The resulting Network Functions Virtu-
alization (NFV) paradigm abstracts network functions from dedi-
cated hardware to virtual machines running on commodity hard-
ware. This change in the design of carrier networks is inspired by
the success of virtualization in the server market. By deploying
NFV, network operators envision to achieve benefits similar to the
server market and elastic cloud services, e.g., flexible and dynamic
service provisioning, increased resource utilization, improved en-
ergy efficiency, and ultimately decreased operational costs. Despite
these efforts, the ability of NFV to satisfy performance demands is
often questioned. Tackling these challenges opens a set of research
questions that felt short in the current discussion and are of particu-
lar relevance to the SIGCOMM community. In this position paper,
we therefore provide an overview on the current state-of-the-art and
open research questions.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design; C.2.3 [Computer-Communication Networks]:
Network Operations

Keywords
Network functions, middleboxes

1. INTRODUCTION
Today’s networks not only include forwarding elements but are

increasingly comprised of active networking components that mon-
itor or process the traffic. These components are referred to as mid-
dleboxes and realize network functions. The number of middle-
boxes deployed in current networks can even be in the same order
as the number of forwarding elements [64]. Typical network func-
tions improve network performance (e.g., proxies or TCP optimiz-
ers) and network security (e.g., intrusion detection systems or fire-
walls). These functions are commonly run on dedicated hardware
that is specialized to provide a single network functionality. These
hardware appliances are deployed at specific sites and are wired in
use-case-dependent forwarding graphs (i.e., service chains). As a
result, they are difficult to maintain, update, and scale.

Thus, the current realization of network functions in dedicated
hardware appliances challenges the flexible provisioning of ser-
vices. For example, the elastic scaling of services according to
varying customer demands is challenged by the limited availability
of hardware that is installed at certain locations in a carrier net-
work. To satisfy changing demands, the quantity of the available
hardware, their location, and the timely procurement and installa-
tion process have to be carefully predicted. This prediction, how-
ever, introduces a non-negligible risk: First, if the forecast deviates
from actual demand, relocation of misplaced, or liquidation of un-
used hardware is costly. Secondly, the aforementioned relocation or
additional procurement needs time and prevents the network from
quickly reacting to changing demands.

This problem of flexible service provisioning has been solved in
the server market by virtualization techniques and the subsequent
realization of scalable Infrastructure-as-a-service (IaaS) cloud ser-
vices. Such services allow tenants of IaaS clouds to rapidly provi-
sion computing resources without changes to the server hardware.
This includes a dynamic increase or decrease (scale in / out) of the
used resources and a better utilization of idle capacity. It therefore
offers potential for cost reduction and improved energy efficiency.
As a result, the IaaS cloud computing paradigm not only is a tech-
nical concept, but has also become a business model (examples in-
clude Amazon AWS and private clouds operated with OpenStack).

Initiated by a consortium of Internet Service Providers (ISPs)
in 2012 [11], the Network Functions Virtualization (NFV) concept
aims at applying these solutions to carrier networks. Concretely,
NFV solves the problem of flexibly provisioning network functions
by realizing them in virtualized environments running on commod-
ity hardware platforms. As a result, ISPs envision to achieve ben-
efits similar to advances in the server market, e.g., elastic resource
provisioning, improved energy efficiency, and ultimately reduced
costs. While the current efforts on NFV are mainly driven by ISPs
and commercial interests, they still offer a set of research chal-
lenges that are slowly being picked up by the research community
(see for example the HotMiddlebox workshop).

The realization of NFV particularly requires achieving high packet
processing performance. It is often questioned if NFV can sat-
isfy these demands, since the additional software complexity chal-
lenges obtaining performance figures that are comparable to ded-
icated hardware. Tackling this challenge opens a set of research
questions that are of particular relevance to the SIGCOMM com-
munity. In this position paper, we therefore i) review current in-
dustry and research efforts on NFV and ii) outline research chal-
lenges arising in NFV with a particular focus on achieving NFV
performance (we refer to [49] for an overview on other research
challenges). By this, we aim to provide a starting point for re-

search in the emerging area of NFV. We start by summarizing the
core principles and goals of NFV as well as ongoing standardiza-
tion efforts in Section 2. We then complement the standardization
perspective by providing an overview of NFV use cases that are
currently being addressed in the academic literature in Section 3.
Since achieving high packet processing performance is critical but
not optimized in current virtualization techniques, we focus on dis-
cussing performance-related aspects in Section 4. Lastly, we dis-
cuss research challenges to outline a first research agenda on NFV.

2. NETWORK FUNCTIONS
VIRTUALIZATION

A network function (NF) is an intermediate traffic processing
entity in a network. From a system management perspective, it
is a building block of a network that monitors or processes net-
work traffic (see also ETSI’s definition [13]). Besides that, there
are control-plane NFs, which take over management tasks beyond
traffic processing.

The term Network Functions Virtualization (NFV) was brought
to attention by Internet Service Providers through standardization
by the European Telecommunications Standards Institute (ETSI) [11].
It describes a new paradigm in which network functions are en-
visioned to be abstracted from dedicated hardware appliances (so-
called middleboxes), and run as virtualized network functions (VNFs)
on cheaper general-purpose hardware.

To further save costs, virtualization and IaaS cloud mechanisms
can be applied to elastically provision network functions. Thus, one
target of NFV is to reduce capital and operational expenses caused
by the procurement, installation, and maintenance of specialized
networking hardware to implement the functions. Hardware ex-
penses are reduced to the one of a cloud infrastructure, commonly
comprised of mentioned general-purpose servers and forwarding
equipment. This allows infrastructure services to scale with user
demand. Examples include the dynamic provisioning of additional
NFV instances in peak hours or the concentration of functions in
fewer datacenters in times of under-utilization.

2.1 Standardization Activities
We start by reviewing standardization activities as the first forum

for (industry-driven) efforts on developing NFV.
The NFV standardization activity at the ETSI is organized as

Industry Specification Group and was initiated in 2012 upon the
publication of a first white paper that coined the term NFV [11].
The initiative currently involves more than 200 member compa-
nies working in different NFV-related working groups. The over-
all mission of the ISP and industry-driven initiative is to provide
guidelines for an open and interoperable NFV ecosystem. Mean-
while, the ETSI NFV working groups produced a variety of docu-
ments discussing NFV-related aspects. These include i) use cases
and terminology definitions, ii) architectural frameworks and vir-
tualization requirements, iii) security and reliability aspects, iv) in-
frastructure considerations, v) management and orchestration, and
vi) performance and service quality (see [3] for a full overview).
These documents resemble the current single richest body of NFV
documents.

Standardization work at the IETF focused on attempts to form
working groups (i.e., Virtual Network Function Pools (VNFPOOL)
and Network Function Virtualisation Configuration (NFVCON))
and the dissemination of different draft documents in different es-
tablished working groups starting in 2013. For instance, the VNF-
POOL initiative focused on reliability aspects arising when realiz-
ing virtualized network functions and published several draft docu-

ments that outline use cases and their requirements (see e.g., [71]).
Besides these initiatives, several established working groups eval-
uated the NFV idea and published draft documents (e.g., focusing
on IPv6 considerations [22]). Other related efforts concern work on
service function chaining within an established working group [10]
and works on network abstraction and programmability (see e.g.,
the SDNRG, FORCES, and I2RS working groups).

Activities at the Internet Research Task Force (IRTF) concern the
formation of a Network Function Virtualization Research Group [4]
and several drafts. These drafts describe ongoing work on monitor-
ing [37], verifying NFV services [65], unifying carrier and cloud
networks [66], software defined infrastructures and scalability [48,
58, 36], policy aspects [28], and resource management [40].

2.2 SDN, Network Virtualization, NFV:
What’s the Difference?

One natural question concerns the relation of NFV to other re-
cent advances in network management. The most prominent ap-
proaches are network virtualization [23] and Software Defined Net-
working (SDN) [35].

Network virtualization aims at virtualizing network links to al-
low multiple virtual networks to coexist on a single physical link.
This attempt creates a separation of concerns for different roles: i)
infrastructure providers managing the physical infrastructure and
ii) service providers that create and manage the overlaying vir-
tual networks [23]. By this, network virtualization introduces new
means for sharing and managing network links.

Orthogonal to network virtualization, Software Defined Network-
ing (SDN) rethinks network management by splitting the control
and data plane and by applying operating system design principles
to the control plane design. These principles include the introduc-
tion of control plane layers and open interfaces between these lay-
ers. SDN can be used i) to realize network virtualization, ii) to
instantiate and manipulate forwarding graphs (service chains) [17],
or iii) to realize simple, commonly stateless network functions such
as packet filters. The design of SDN, however, focuses on manag-
ing the packet forwarding process. Typical network functions (e.g.,
proxies or TCP optimizers) instead go beyond the functionality of
SDN. They often involve stateful manipulations of packets and are
implemented in rather complex software systems. Thus, NFV is an
orthogonal technology that addresses different needs of network
management, i.e., flexible and efficient provisioning of network
functions.

3. USE CASES
Network middleboxes can be found in many places: at home, in

small businesses, large enterprises, and of course in carrier envi-
ronments. The functions they implement are versatile, and NFV is
aimed to replace them. This section introduces use cases of NFV—
traditional and novel network functions—and reveals early as well
as elaborate efforts to replace them. By compiling a representative
set of NFV use cases that were mainly addressed and evaluated by
researchers, we complement standardization documents that sum-
marize the industry perspective (see e.g., [12]).

3.1 Carrier Clouds
Carrier clouds aim to bring the benefits of cloud computing to

traditional carrier networks [67]. These benefits include efficient
resource usage and resource scalability and elasticity. In contrast
to (typically larger) public clouds, carrier clouds are hosted by the
carriers themselves and are thus closer to the end user, or are lo-
cated deeper inside the network. Thus, carriers keep control over
their network and are able to control security and privacy aspects.

NFV serves as a key enabler for realizing carrier clouds. Carrier
clouds can be used to realize many of the use cases that are dis-
cussed in the subsequent sections.

3.2 Fixed Access Networks
Virtual Residential Gateways. Residential gateways intercon-

nect home networks with residential access networks. These gate-
ways have high provisioning and update costs. For example, the de-
ployment of new services, features, or changed configurations often
requires the roll-out of firmware updates. Such a roll-out is chal-
lenged by the heterogeneous device landscape, in which firmware
updates might not always be possible. To address these challenges,
it has been proposed to virtualize the gateway and to subsequently
replace it by a L2 switch [12, 72, 25]. Replacing the gateway at the
users’ home by a layer 2 switch offloads network functions (e.g.,
NAT, firewall, DHCP) to per-user virtual machines running in the
carriers’ network (e.g., running in a carrier cloud). This offloading
reduces the complexity of residential gateways, improves network
debugging and flexible provisioning of features and updates. The
evaluation of virtual residential gateways shows increased perfor-
mance, i.e., higher throughput and lower access latencies. It further
promises cost reductions of up to 90% in call centers and up to 46%
on product returns [72]. However, since the switched architecture
extends the users’ LAN to the carriers’ network, this mechanism
has potential security and privacy implications.

This idea is generalized by the concept of Edge-as-a-Service [24].
By applying cloud computing concepts to fixed and mobile edge
networks, access network components can be shared in a flexible
way. An example use case involves sharing radio and WiFi access
to distribute network traffic more efficiently.

In light of this development are efforts to virtualize the PPPoE
access concentrator (see RFC 2516) which terminates the PPP link
at the ISP’s side [16]. It is the primary network function of a Broad-
band Remote Access Server (BRAS) and provides authentication of
its customers, billing, logging, and potentially address assignment.
Performance evaluation of commodity hardware with 10GE inter-
faces showed that line-rate performance can be achieved for full-
sized packets. Another use case comprises to virtualize VPN end-
points or concentrators. Like PPP/PPPoE, this also involves header
pushing/popping, but additionally involves payload processing for
encryption or signing.

3.3 Radio Access Networks
Similar to fixed access networks, several works suggest to virtu-

alize components of the radio access and the network core.
Mobile Access. In the radio access, the virtualization of core

components can increase flexibility and allow efficient transitions
between different network architectures [53]. As an example, sev-
eral works propose to virtualize the baseband unit as a common
network function of 3G and 4G mobile networks [33, 43]. Besides
simplified transitions between network technologies, NFV can ease
prototyping [52] and resource sharing [51, 73]. In case of the latter,
the physical network infrastructure is envisioned to be sliced into
several virtual networks, similar to network virtualization. This fur-
ther simplifies prototyping by operating several network instances
in parallel and allows the network to be used by multiple virtual net-
work operators. The latter allows physical radio access resources to
be shared more efficiently and reduces the barriers for new (virtual)
carriers to enter the market. An example includes the virtualization
of LTE eNB air interface [73].

Mobile Core. Beyond the virtualizing radio access components,
recent work has also proposed to virtualize components of the net-
work core. One example concerns the virtualization of the Evolved

Packet Core in LTE networks [68]. The proposed architecture or-
chestrates lightweight virtualized mobile core network instances
that run in a (carrier) cloud. This concept allows operators to scale
their mobile core network with varying traffic demand.

3.4 Network Core
Translation Technologies. To ease IPv4-to-IPv6 transition, Dual-

Stack Lite (DS-Lite) reduces the need to operate dual-stack net-
works. It establishes a light-weight IPv4-over-IPv6 tunnel from the
residential gateway to an address family transition router. Thus,
only a single IPv6 network needs to be maintained, while IPv4 is
tunneled to legacy peering points. DS-Lite functionality is suit-
able for virtualization, in particular since a relevant Address Family
Transition Router implementation is available in software [1]. Sim-
ilarly, Carrier Grade NAT gateways are suitable for virtualization.

Multimedia Services. The IP Multimedia Subsystem is a key
component of all-IP Next Generation Networks. Its architecture
consists of a multitude of components that that can be offered as
virtualized cloud services to achieve resource scalability [20]. This
effort includes virtualizing the Session Border Controller (see RFC
5853) as an Application Layer Gateway (ALG). Among other use
cases, it provides accessibility for clients behind NAT gateways
and enforces security by detecting and dropping Denial-of-Service
(DoS) or other malicious SIP signaling attempts. A high gateway
performance is required to handle a large number of simultaneous
SIP/RTP sessions. The evaluation of a virtualized gateway imple-
mentation [50] shows its general feasibility, but at lower perfor-
mance than gateways implemented in dedicated hardware.

Load Balancing. Many popular services (e.g. websites) must
cope with large amounts of requests. NFV can improve network
operation by dynamically instantiating virtual load balancing in-
stances depending on the current network load. Because of the
expected load, the realization in NFV is performance-critical.

Dynamic Provisioning of CDN Caches. Content delivery con-
cerns the problem of moving content closer to end-users. For this,
CDN caches are established in proximity to the access network.
NFV offers the potential to dynamically provision CDN caches in
which the physical infrastructure can be shared by multiple CDN
operators. When using NFV to implement such a cache, not only
network performance is crucial, but also storage requirements play
a dominant role. The prototypical Xen-based implementation of
a CDN cache shows that a virtualized cache can serve content at
10GE line-rate [39].

3.5 Security
Other example use cases concern achieving network security.
Firewalls. While stateless firewalls up to the transport layer can

be implemented with SDN [41], more advanced threat mitigation
techniques, that require at least TCP session tracking, need to be
realized in software. This includes application layer analysis, e.g.,
signature-based malware detection. Firewalls resemble a suitable
virtualization target since they can be scaled with network traffic
demands. However, as for other network functions, realizing high
packet forwarding performance is crucial.

DDoS Mitigation. Various strategies for thwarting distributed
denial-of-service (DDoS) attacks in cloud datacenters exist [38].
While describing a method to detect long-lived flows and several
attacks that may be mitigated with this technique, it was found that
using NFV allows for faster time-to-market for novel attack miti-
gation strategies, better scalability and lower energy consumption.

4. NFV PERFORMANCE TODAY
The realization of NFV requires the achievement of high packet

processing performance. However, if performance is not taken
carefully into account during implementation, the interaction be-
tween the general-purpose nature of the CPU and its periphery, and
the complexity of the software, can severely deteriorate the former.
Depending on the respective application, performance figures in-
clude classical metrics, e.g., delay, jitter, or throughput. The latter
is often expressed as packets per second (pps) to respect the header
processing load of small packets. Besides these dataplane-related
performance metrics, also the startup or migration time can become
relevant, especially for highly-dynamic per-user VNFs.

Compared to the implementation in optimized hardware, the re-
alization of NFV is challenged by a multitude of overheads in the
entire software and virtualization stack. For example, it has been
shown that existing protocol stacks are not suitable for achieving
line-rate performance when processing small sized packets on mul-
tiple 10GE interfaces [45]. These effects can be more pronounced
in virtualized environments such as NFV, when additional software
layers or even kernel stacks need to be traversed. Furthermore,
virtualization has been shown to introduce additional packet jit-
ter [70]. As a result, attempts to bypass the kernel and to further
optimize virtualization systems have been made [32, 63, 47, 46].

We therefore focus next on reviewing the current state-of-the-
art solutions to address performance issues arising with the realiza-
tion of NFV. Despite these advances, realizing performance-critical
network functions in NFV (e.g., virtualized switches) are still chal-
lenged by the aforementioned imposed overheads. Thus, finding
approaches to further improve performance is the first pressing re-
search challenge required to convincingly demonstrate the feasibil-
ity of NFV (Section 5).

4.1 Virtual Packet Forwarding
The task of virtual packet forwarding between virtual machines

and physical interfaces on the same hardware node is critical for the
performance properties of an NFV infrastructure. The architectural
component that implements virtual packet forwarding on a physical
computing node is called vSwitch (Virtual Switch) because of its
functional similarity to physical switches (see Figure 1a).

The Linux bridge [7] is part of the Linux kernel and allows the
kernel to act as a vSwitch by instantiating bridges. Bridges are sim-
ple Layer 2 forwarding instances between virtual or physical inter-
faces. Despite its ease of use, its wide adoption and well-known
stability, the Linux bridge lacks flexibility on the data plane. Es-
pecially for NFV, custom forwarding rules beyond L2 bridging are
required, like offered by OpenFlow. MacVTap [5] is a collapsed
network forwarding and TAP driver for Linux (see Figure 1b). It
also does not support OpenFlow.

This lack of features is addressed by the Open vSwitch [56, 55].
It adds features of enterprise-class switches (e.g., LACP link ag-
gregation, 802.1q VLAN tagging and QoS policing) and supports
OpenFlow. The forwarding performance at single-core systems has
been shown to reach 1.8 million packets per second (Mpps) as com-
pared to the Linux bridge that only reaches 1.1 Mpps [27]. With in-
creasing packet size, throughput in packets per time keeps the same,
but is bounded by physical limits of the interface. The results show
performance differences between different versions.

VALE [62] is another software switch, primarily developed for
high-performance throughput between VMs. It is implemented as
an extension of the netmap driver, which was developed by the
same authors. Compared to Open vSwitch, it is very lightweight
and does not contain advanced configuration backends. Further-
more, it is restricted to simple MAC-layer forwarding and does not

support OpenFlow, thus it does not easily integrate into SDNs. The
authors of VALE and Netmap claim a far better performance than
Open vSwitch, however, this claim is based on a comparison with
an OVS version modified to fit into the NetMap framework [61].
VALE is used by ClickOS (see Section 4.5).

When copying large amounts of data in memory, the negative
impact on CPU consumption is tremendous [69]. Therefore, zero-
copy forwarding is one of the most important goals of VM net-
work forwarding. Optimally, the packet remains on the same spot
in memory during the complete process on a single hardware node,
and only a pointer to it is handed over to, from, or between VMs. To
reach this goal, support for it must be realized in the vSwitch, the
hypervisor, and the guest network drivers. Originally implemented
in QEmu [9], IVSHMEM is a prominent enabler implementation to
achieve this goal. IVSHMEM is also supported by Open vSwitch
and DPDK (see Section 4.3). However, zero-copy as proposed by
IVSHMEM leaves a lot of open questions, like if this support can
be extended to different types of VNFs, for example. Furthermore,
zero-copy arises security concerns for the packet buffer memory
pages, as all components involved require complete access to that
memory region.

4.2 Hardware-Assisted Packet Forwarding
Software switches (e.g., the Linux bridge or Open vSwitch) are

complemented by hardware-assisted approaches for faster process-
ing. These techniques offload the general-purpose processor and
speed up network performance [42].

The most prominent standard is single-root I/O virtualization
(SR-IOV) by the PCI Special Interest Group (PCI-SIG). A SR-IOV-
capable network card (see Figure 1c) appears as a PCI device to the
host, providing a physical function (PF). With the PF driver, the
host is able to configure internal, hardware-based virtual bridges
and spawn multiple virtual network interfaces, so-called virtual
functions (VFs). Virtual functions appear as additional stand-alone
PCI devices to the host. These interfaces then may be passed to
different VMs via PCI passthrough. However, beyond the fact that
SR-IOV-capable network interfaces may be costly, the hardware-
based approach has several limitations. On the one hand, flexibility
is reduced as the forwarding is restricted to the vendor’s hardware
capabilities (which may be restricted to common layer 2 bridging).
On the other hand, the benefit of hardware abstraction is lost.

A principle similar to SR-IOV is introduced with Virtual Ma-
chine Device Queues (VMDq), however with a very different ar-
chitectural approach: By default, a network card writes into a sin-
gle receive queue. The vSwitch then must decide about to which
instance queue to forward the packet, which consumes a major
amount of CPU cycles. VMDq relieves the CPU from the lat-
ter task by creating multiple receive queues, and lets the network
card classify the packets in hardware to decide where to enqueue
them. This classification is done by application- or user-defined
rules. The main difference of SR-IOV compared to VMDq is that
multiple virtual interfaces are created, while VMDq just multiplies
receive queues. VMDq may not only benefit the performance of
vSwitches, but also the one of a single network function (Section
4.3). Therefore, VMDq is a starting point for solving the problem
of efficient input queue parallelization. However, being subject to
very individual requirements from future VNFs to prioritize and
distribute the packets to different queues and cores, the limits of
VMDq for the parallelization of a single VNF could be quickly
reached.

4.3 Network Stack Offloading
It has been shown that the performance of current network stacks

does not scale with increasing line-rate, especially for small pack-
ets [45]. As a result, offloading techniques have been proposed that
either bypass the kernel or offload functionality to hardware.

The first class of approaches improve the packet processing per-
formance by bypassing the network stack. The two prominent ap-
proaches include netmap [62] and the Data Plane Development Kit
(DPDK) [21]. These frameworks allow the implementation of ac-
celerated network functions by obtaining raw and exclusive access
to the NIC and thus bypassing the network stack entirely. This
advantage comes at the price of requiring specialized user-land
stacks performing the packet processing, instead of relying on well-
maintained kernel stacks. To ease the implementation of packet
processing functionality, the DPDK provides a large library of com-
mon packet processing code, including but not limited to queue
management, packet classification, poll-mode drivers (PMD), packet
header structs, and checksum computing [2]. DPDK supports IVSH-
MEM (Section 4.1). A prominent example of an application is
Open vSwitch, which can optionally make use of the DPDK for
its physical interfaces to increase performance. It has been shown
that the already mentioned network throughput can be increased by
a factor of 6 (physical-to-physical NIC) when additionally using
the DPDK for acceleration [27].

The OpenDataPlane [8] project uses a very similar approach
to DPDK. The most important difference is that the project puts
a larger emphasis on a broad standardization of the network inter-
face API. A further example in the area of kernel bypassing is the
aforementioned netmap driver [62], which has been shown to sig-
nificantly improve packet processing performance [45, 62].

The mentioned frameworks and kits for network stack offload-
ing are a basis for developing high-performance network functions,
also through allowing the developer to exploit NIC acceleration
features independently of kernel support. Thus, they do not provide
a full solution, but leave a lot of open questions and alternatives to
implement network functions. This way, they provide the research
platform of choice compared to kernel-based drivers.

Another class of approaches involves function offloading. One
line of research proposes to (partially) offload packet processing
functionality to dedicated hardware (see e.g., [31, 57]). Another
line of research proposes to short-cut packet processing by offload-
ing functionality directly to stack. For example, Santa [63] provides
an application-agnostic kernel-level cache of frequent requests and
offers potential for drastic performance improvements. The lat-
ter class of approaches denotes specialized solutions to implement
high-performance network functions. Given their specialized na-
ture, they either require specialized hardware—which might not
be always available—or are not generally applicable to all kinds
of NFV workloads. Performance benchmarks are required to first
identify whether the approaches in this chapter fulfill the require-
ments / workload of carrier-grade network functions, or whether
different architectural designs are required. Thus the question of
the proper network architecture design for NFV is left open.

4.4 VM Network I/O Optimization
Different virtualization architectures exist that have different im-

pacts on performance. Full virtualization allows to run unmodified
guest operating systems since legacy devices must be emulated in
software. In contrast, paravirtualization requires a special driver
on the guest operating system, while the host uses an appropriate
backend driver. From the performance perspective, it is desired to
use paravirtualized guests. The reason is that the emulation incurs
additional VM overhead and redundant context switching, while

VirtIO VirtIO

TAP driver TAP driver

Frontend
Driver

vSwitch

VirtIO VirtIO

MacVTap

Frontend
Driver

Frontend
Driver

Frontend
Driver

Frontend
Driver

PF
DriverPCI

Frontend
Driver

PCI PCI

Driver
PCI

Driver
PCI

VM Context

Hyper-
visor
Context

a) Generic vSwitch b) MacVTap c) SR-IOV

Virtual
Func-
tions

Figure 1: Architectures for VM network forwarding and I/O

paravirtualized drivers can be optimized for the special needs of the
communication between hypervisor and VM. VirtIO [6] is a stan-
dard I/O interface for paravirtualization. It allocates shared mem-
ory, which is accessible from the hypervisor as well as the VM.
The vhost-net backend driver provides improved efficiency on the
Linux platform by moving packet forwarding to the kernel.

Context switching causes a large amount of overhead in virtual-
ization environments [15, 74]. Thus, besides of shortening the I/O
path with the usage of the hardware-abstract VirtIO or the hardware-
based SR-IOV, further performance can be achieved by the reduc-
tion of context switching. Every packet which arrives may gen-
erate an interrupt, leading to a VM exit, so that the kernel can
hand over the new packet to the VM driver. In contrast, poll-mode
drivers (PMD) let the network interface buffer the packet, and hand
it over upon a driver’s request (polling). These kind of drivers
do not require interrupts for operation, however, polling consumes
CPU resources also during potential idle times, deteriorating re-
source availability or energy efficiency in this case. An alternative
to polling is interrupt coalescing. Here, interrupts are delayed until
a certain threshold is reached [26].

To address delayed interrupts, Exitless Interrupts (ELI) were pro-
posed. The idea is to keep the interrupts, but reduce the need of
context switching per interrupt. Instead of the VM receiving virtual
interrupts from the host, the VM uses a shadow interrupt descriptor
table (IDT), where interrupts are delivered directly by hardware.
The ELI concept was incorporated into the Exitless Virtual I/O Sys-
tem (ELVIS) [30].

The performance of different virtual state-of-the-art I/O drivers
has been evaluated by Intel [34]. The system under test was a KVM
hypervisor running one virtual machine, on which a netperf bench-
mark was conducted. The drivers under test were QEMU’s e1000,
VirtIO and vhost-net. Regarding throughput, the e1000 driver only
achieves a fraction of the performance of VirtIO and vhost-net,
where the latter achieve similar performance. DPDK and SR-IOV
support can further improve network throughput. Latency compar-
isons were conducted by Wagner et al. [60]. Here, vhost-net clearly
outperforms userland-based VirtIO with a backend driver moved to
the kernel and thus quicker reaction to events.

Besides these very recent and promising first steps to optimize
virtualization for network I/O, a variety of research questions are
still left open. The design and evaluation of the proper NFV virtu-
alization architecture requires an in-depth study of performance re-
quirements and bottlenecks in virtualized network functions. Such
performance centric aspects concern the optimization of context
switching and interrupts, depending on the workload characteris-
tics. Another relevant research area may reside in the correct trade-
off between the advantages and disadvantages of PMDs and inter-
rupts. While the former commonly perform better when high, con-

stant throughput is required, the latter produce fewer costs regard-
ing CPU utilization and efficiency when throughput requirements
are low.

4.5 Operating System Complexity
Current research attempts question the use of fully-fledged oper-

ating systems and instead propose tailored kernels to realize NFVs.
Fully-fledged OSes are desired for server applications due to flexi-
bility, easier software development and configuration. However, in
the case of NFV, network performance is critical and challenged by
such a fully-fledged software stack.

A first step to address this challenge is taken by two recent re-
search prototypes based on the Xen hypervisor. ClickOS [46, 47]
realization of network functions is based on a light-weight uniker-
nel only executing the Click modular router. This architecture al-
lows to execute each NFV in a dedicated VM that can be quickly
instantiated. The realization of ClickOS showed that several opti-
mizations of the software stack are required to achieve high per-
formance figures. These modifications concern the VM network
forwarding architecture as well as the Xen frontend and backend
network drivers. In a similar fashion, Jitsu [44] focuses on achiev-
ing resource isolation by quickly booting unikernels on demand to
handle network requests.

These attempts open the question on the appropriate software ar-
chitecture to realize NFV. In the case of OS kernels, the question
concerns trade-offs in the use of tailored unikernels that quickly
boot vs. versatile fully-fledged commodity operating systems. Fu-
ture work concerns the identification and evaluation of appropriate
architectures for the multitude of available network functions.

5. RESEARCH CHALLENGES
Bringing NFV from a draft to an implementation state poses a set

of research questions that need to be addressed by the community.
We next discuss relevant questions to outline a research agenda.

5.1 NFV Performance Improvement
Local performance. The very first challenge arising when re-

alizing NFV is to achieve high packet processing performances in
virtualized environments. Optimizing this local performance con-
cerns the whole spectrum of involved software, from kernels and
network stacks to virtualization architectures. Despite the advances
described in Section 4, the attempts to realizing performance-critical
network functions in NFV are still challenged by the overheads im-
posed by software and virtualization stacks.

These overheads open research opportunities for optimizing the
entire NFV stack for speed. Such an optimization is challenged by
different demands imposed by different network functions. For ex-
ample, some functions will require a high packet processing through-
put (e.g., TCP optimizers), while others will require stable sessions
with a low latency (e.g., Session Border Controller).

Besides the overheads, performance challenges arise from the
present hardware architectures making use of sequentially working
processors. Especially for compute-intensive network functions, it
might be investigated if and how it is possible to parallelize oper-
ations on the same packet, for example, multiple cores could ma-
nipulate a single packet in parallel in a zero-copy memory region.
A similar idea is to add reprogrammable acceleration hardware like
FPGAs to an NFV infrastructure [18, 19] allowing for short, guar-
anteed delay and a high throughput. Reconfigurable FPGAs or
NPUs preserve the flexibility target of NFV and open up opportuni-
ties for elastic redistribution of workloads with extraordinarily high
performance requirements to acceleration hardware [54]. These as-
pects open the question for new architectural designs. While first

approaches for some aspects have been proposed, the question of
the proper architectural design of NFV software stacks is far from
being resolved.

Global performance. The challenge of optimizing the NFV
software stack (local performance) is complemented by the chal-
lenge to globally optimize the performance of network functions in
the entire network. This challenge is stimulated by prior research
which showed that splitting state and functionality eases the global
scaling of network functions [59]. This observation further fosters
research aiming to get a firm understanding of means to implement
distributed network functions in a performance-efficient manner.

5.2 NFV Performance Benchmarking
To legitimately glorify or condemn NFV, and even more to com-

pare existing solutions, it is required to have correctly quantified
NFV performance characteristics. First, performance evaluations
are required to study which functions—under which workloads—
are suitable for commodity hardware implementation and virtual-
ization. It has to be shown for which network functions not only the
performance, but also the promised benefits of increased resource
utilization, improved energy efficiency, and decreased costs can be
achieved. Secondly, the performance of different NFV technology,
architecture and implementation alternatives need to be compared
preferably with a benchmark, which provides standardized results
for even later, independent comparison. Existing standards for the
benchmarking of hardware middleboxes, for example RFC 2544,
do not fully respect the increased complexity caused by the entan-
glement between VNFs and their underlying infrastructure.

In a typical NFV architecture, the problem of NFV benchmark-
ing can be separated into NFV infrastructure benchmarking and
VNF benchmarking. The former one evaluates the generic plat-
form which forwards traffic to VNFs and constitutes the execution
environment in which they operate, for example network and server
hardware, hypervisor software, vSwitches, but also network and
NFVI controllers. In contrast, the latter one evaluates the imple-
mentation efficiency of VNF-specific algorithms, design choices,
and their realization in code.

One can revert to a variety of metrics to calculate a benchmark.
Besides the aforementioned well-known performance metrics like
delay, jitter, and throughput, for either an individual VNF node or
a pre-defined NFVI, a complex set of cost metrics could be gath-
ered from the set of components. Finally, the methods to obtain
them might strongly differ. The software nature of VNFs allows
the direct application of a broad range of software benchmarking
methodologies. In turn, black-box stress tests run the code in a
testing infrastructure to evaluate those parameters.

To assist network planning, insights gained in empirical perfor-
mance evaluations should be reflected in NFV performance mod-
els. The so created models capture the workload dependent packet
processing performance of network functions and can be used for
function placement and network dimensioning. Workload models
can be further used for traffic generation and benchmarking.

5.3 Further NFV Research Challenges
Orchestration and Reliability. Works on SDN have progressed

to realize different protocols and controller architectures, to address
reliability challenges and applications (see [35] for an extensive
overview). In comparison to SDN related efforts, NFV is still in
draft state in which a general execution and orchestration platform
is still missing. A recently formed initiative focuses on realizing
such a platform as open source (see www.opnfv.org). Fur-
ther efforts include state transfers between network functions [29],
functional blocks, controllers, and descriptive languages [14]. De-

www.opnfv.org

spite these initial efforts, many questions concerning the algorith-
mic design for the dynamic orchestration of network functions and
methods for achieving reliability are still unanswered. In partic-
ular designing algorithms for operating virtualized networks in a
reliable manner will be critical for the success of NFV.

Energy Efficiency. The dynamic provisioning of network func-
tions has the potential to improve the energy efficiency of car-
rier networks. Answers to this question depend, however, on a
multitude of system factors involving network function placement,
workloads, system and data center locations, and orchestration al-
gorithms. The design of energy efficient NFV networks thus re-
quires the development of new algorithm controlling the function
placement and evaluations of the different system designs and in-
fluence parameters.

Security and Privacy. The relocation of network functions to
cloud services has the potential for creating new challenges on data
privacy and network security. An example concern ISP efforts to
extend the users’ home networks to carrier clouds by virtualizing
residential gateways (see Section 3.2). These effects are expected to
be further pronounced when carrier clouds are scaled out to public
clouds run by third parties. Clouds not only pose new challenges in
terms of security and privacy but also offer a new set of solutions.
For example, one could scale a service as one of the measures to
mitigate a DDoS attack. This motivates the study of these new
challenges and an open discussion disputing on these advances in
network operation.

6. SUMMARY
Emerged in late 2012, Network Functions Virtualization (NFV)

describes a new network management paradigm in which network
functions are abstracted from dedicated hardware to virtualized ma-
chines running on commodity hardware. It addresses the desire to
manage networks in a more scalable and flexible manner. This pa-
per provides the first overview of an emerging area that currently
resides in a draft state and is slowly being addressed by the re-
search community. First signs of adoption are the growing body of
academic literature and the first formation of NFV related venues
(e.g., the SDNFlex workshop and the IEEE Conference on NFV
and SDN to be held in 2015 for the first time). We focus on review-
ing these research attempts and use cases to complement industry
driven efforts by the standardization bodies ETSI and IETF. Our
discussion of research challenges aims at outlining a first research
agenda on NFV.

7. ACKNOWLEDGEMENTS
This work has been funded by the German Research Founda-

tion (DFG) within the Collaborative Research Center (CRC) 1053
– MAKI as well as by Deutsche Telekom through the project “Dy-
namic Networks”.

8. REFERENCES
[1] Address family transition router reference implementation by the

internet systems consortium.
http://www.isc.org/downloads/aftr/.

[2] DPDK: API documentation. http://dpdk.org/doc/api/.
[3] ETSI NFV open documents. http:

//docbox.etsi.org/ISG/NFV/Open/Published/.
[4] IETF: Network function virtualization research group.

https://trac.tools.ietf.org/group/irtf/trac/
wiki/nfvrg.

[5] Kernel Newbies: MacVTap.
http://virt.kernelnewbies.org/MacVTap.

[6] KVM: VirtIO.
http://www.linux-kvm.org/page/Virtio.

[7] Linux Foundation: bridge. http://www.linuxfoundation.
org/collaborate/workgroups/networking/bridge.

[8] OpenDataPlane - Project Website.
http://www.opendataplane.org/.

[9] QEmu: IVSHMEM implementation. https://github.com/
qemu/qemu/blob/master/hw/misc/ivshmem.c.

[10] Service function chaining IETF working group. https:
//datatracker.ietf.org/wg/sfc/documents/.

[11] Network functions virtualisation - introductory white paper. In SDN
and OpenFlow World Congress, 2012.

[12] ETSI: Network functions virtualisation (NFV); use cases, 2013.
[13] ETSI GS NFV 003: Network functions virtualisation (NFV);

terminology for main concepts in NFV, 2014.
[14] ETSI GS NFV-MAN 001: Network functions virtualisation (NFV);

management and orchestration, 2014.
[15] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor, N. Har’El,

A. Gordon, A. Liguori, O. Wasserman, and B.-A. Yassour. The
turtles project: Design and implementation of nested virtualization.
In OSDI, 2010.

[16] R. Bifulco, T. Dietz, F. Huici, M. Ahmed, J. Martins, S. Niccolini,
and H.-J. Kolbe. Rethinking access networks with high performance
virtual software BRASes. In EWSDN, 2013.

[17] J. Blendin, J. Rückert, N. Leymann, G. Schyguda, and D. Hausheer.
Position paper: Software-defined network service chaining. In
EWSDN, 2014.

[18] Z. Bronstein, E. Roch, J. Xia, and A. Molkho. Uniform handling and
abstraction of nfv hardware accelerators. IEEE Network,
29(3):22–29, May 2015.

[19] S. Byma, J. G. Steffan, H. Bannazadeh, A. L. Garcia, and P. Chow.
Fpgas in the cloud: Booting virtualized hardware accelerators with
openstack. In IEEE FCCM, pages 109–116, May 2014.

[20] G. Carella, M. Corici, P. Crosta, P. Comi, T. Bohnert, A. Corici,
D. Vingarzan, and T. Magedanz. Cloudified IP multimedia subsystem
(IMS) for network function virtualization (NFV)-based architectures.
In IEEE Symposium on Computers and Communication, 2014.

[21] I. Cerrato, M. Annarumma, and F. Risso. Supporting fine-grained
network functions through Intel DPDK. In EWSDN, 2014.

[22] G. Chen and H. Deng. IPv6 considerations for network function
virtualization (NFV). IETF Draft, 2014.

[23] N. M. K. Chowdhury and R. Boutaba. A survey of network
virtualization. Computer Networks, 54(5):862–876, 2010.

[24] S. Davy, J. Famaey, J. Serrat-Fernandez, J. Gorricho, A. Miron,
M. Dramitinos, P. Neves, S. Latre, and E. Goshen. Challenges to
support edge-as-a-service. IEEE Communications Magazine,
52(1):132–139, Jan. 2014.

[25] M. Dillon and T. Winters. Virtualization of home network gateways.
IEEE Computer, 47(11):62–65, Nov. 2014.

[26] Y. Dong, D. Xu, Y. Zhang, and G. Liao. Optimizing network I/O
virtualization with efficient interrupt coalescing and virtual receive
side scaling. In IEEE CLUSTER, 2011.

[27] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle. Performance
characteristics of virtual switching. In IEEE CloudNet, 2014.

[28] N. Figueira and R. Krishnan. Policy architecture and framework for
nfv and cloud services. IETF Draft, 2015.

[29] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl,
J. Khalid, S. Das, and A. Akella. OpenNF: Enabling innovation in
network function control. In ACM SIGCOMM, 2014.

[30] A. Gordon, N. Har’El, A. Landau, M. Ben-Yehuda, and A. Traeger.
Towards exitless and efficient paravirtual I/O. In ACM Systems and
Storage Conference, 2012.

[31] S. Han, K. Jang, K. Park, and S. Moon. PacketShader: A
GPU-accelerated software router. In ACM SIGCOMM, 2010.

[32] J. Hwang, K. K. Ramakrishnan, and T. Wood. NetVM: High
performance and flexible networking using virtualization on
commodity platforms. In USENIX NSDI, 2014.

[33] C.-L. I, J. Huang, R. Duan, C. Cui, J. Jiang, and L. Li. Recent
progress on C-RAN centralization and cloudification. IEEE Access,
2:1030–1039, 2014.

http://www.isc.org/downloads/aftr/
http://dpdk.org/doc/api/
http://docbox.etsi.org/ISG/NFV/Open/Published/
http://docbox.etsi.org/ISG/NFV/Open/Published/
https://trac.tools.ietf.org/group/irtf/trac/wiki/nfvrg
https://trac.tools.ietf.org/group/irtf/trac/wiki/nfvrg
http://virt.kernelnewbies.org/MacVTap
http://www.linux-kvm.org/page/Virtio
http://www.linuxfoundation.org/collaborate/workgroups/networking/bridge
http://www.linuxfoundation.org/collaborate/workgroups/networking/bridge
http://www.opendataplane.org/
https://github.com/qemu/qemu/blob/master/hw/misc/ivshmem.c
https://github.com/qemu/qemu/blob/master/hw/misc/ivshmem.c
https://datatracker.ietf.org/wg/sfc/documents/
https://datatracker.ietf.org/wg/sfc/documents/

[34] Intel. Network function virtualization: Packet processing peformance
of virtualized platforms with Linux* and Intel architecture. Technical
Report.

[35] D. Kreutz, F. Ramos, P. Verissimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig. Software-defined networking: A
comprehensive survey. arXiv preprint arXiv:1406.0440, 2014.

[36] R. Krishnan, N. Figueira, D. Krishnaswamy, D. R. Lopez, S. Wright,
and T. Hinrichs. NFVIaaS architectural framework for policy based
resource placement and scheduling. IETF Draft, 2014.

[37] R. Krishnan, D. Krishnaswamy, D. R. Lopez, A. Qamar, S. Wright,
and N. Figueira. Nfv real-time analytics and orchestration: Use cases
and architectural framework. IETF Draft, 2014.

[38] R. Krishnan, D. Krishnaswamy, and D. Mcdysan. Behavioral security
threat detection strategies for data center switches and routers. In
IEEE ICDCSW, 2014.

[39] S. Kuenzer, J. Martins, M. Ahmed, and F. Huici. Towards
minimalistic, virtualized content caches with minicache. In ACM
HotMiddlebox, 2013.

[40] S. Lee, S. Pack, M.-K. Shin, and E. Paik. Resource management for
dynamic service chain adaptation. IETF Draft, 2014.

[41] Y.-D. Lin. Research roadmap driven by network benchmarking lab
(NBL): Deep packet inspection, traffic forensics, embedded
benchmarking, software defined networking and beyond.
International Journal of Networking and Computing, 4(2):223–235,
2014.

[42] J. Liu. Evaluating standard-based self-virtualizing devices: A
performance study on 10 GbE NICs with SR-IOV support. In IEEE
IPDPS, 2010.

[43] A. Lometti, C. Addeo, I. Busi, and V. Sestito. Backhauling solutions
for LTE networks. In International Conference on Transparent
Optical Networks, 2014.

[44] A. Madhavapeddy, T. Leonard, M. Skjegstad, T. Gazagnaire,
D. Sheets, D. Scott, R. Mortier, A. Chaudhry, B. Singh, J. Ludlam,
J. Crowcroft, and I. Leslie. Jitsu: Just-in-time summoning of
unikernels. In USENIX NSDI, 2015.

[45] I. Marinos, R. N. Watson, and M. Handley. Network stack
specialization for performance. In ACM SIGCOMM, 2014.

[46] J. Martins, M. Ahmed, C. Raiciu, and F. Huici. Enabling fast,
dynamic network processing with clickos. In ACM HotSDN, 2013.

[47] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici. ClickOS and the art of network function virtualization.
In USENIX NSDI, 2014.

[48] C. Meirosu, A. Manzalini, J. Kim, R. Steinert, S. Sharma, and
G. Marchetto. Devops for software-defined telecom infrastructures.
IETF Draft, 2014.

[49] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. D. Turck, and
R. Boutaba. Network function virtualization: State-of-the-art and
research challenges. IEEE Communications Surveys Tutorials, (99),
Sept. 2015.

[50] G. Monteleone and P. Paglierani. Session border controller
virtualization towards ”service-defined” networks based on NFV and
SDN. In IEEE SDN4FNS, 2013.

[51] V. G. Nguyen and Y. H. Kim. Slicing the next mobile packet core
network. In IEEE ISWCS, 2014.

[52] N. Nikaein, M. K. Marina, S. Manickam, A. Dawson, R. Knopp, and
C. Bonnet. Openairinterface: A flexible platform for 5g research.
ACM CCR, 44(5):33–38, Oct. 2014.

[53] H. Niu, C. Li, A. Papathanassiou, and G. Wu. Ran architecture
options and performance for 5G network evolution. In IEEE
WCNCW, 2014.

[54] L. Nobach and D. Hausheer. Open, elastic provisioning of hardware
acceleration in NFV environments. In IEEE NetSys, pages 1–5. 2015.

[55] J. Pettit, J. Gross, B. Pfaff, M. Casado, and S. Crosby. Virtual
switching in an era of advanced edges. In Workshop on Data
Center–Converged and Virtual Ethernet Switching, 2010.

[56] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and
S. Shenker. Extending networking into the virtualization layer. In
ACM HotNETs, 2009.

[57] I. Pratt and K. Fraser. Arsenic: A User-Accessible Gigabit Ethernet
Interface. In IEEE INFOCOM, 2001.

[58] Z. Qiang. Elasticity VNF. IETF Draft, 2014.
[59] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield.

Split/Merge: System support for elastic execution in virtual
middleboxes. In USENIX NSDI, 2013.

[60] S. Rao and M. Wagner. Achieving peak performance from Red Hat
KVM-based virtualization. Technical report, 2010.

[61] L. Rizzo, M. Carbone, and G. Catalli. Transparent acceleration of
software packet forwarding using netmap. In IEEE INFOCOM, 2012.

[62] L. Rizzo and G. Lettieri. Vale, a switched ethernet for virtual
machines. In ACM Conference on Emerging Networking Experiments
and Technologies, 2012.

[63] F. Schmidt, O. Hohlfeld, R. Glebke, and K. Wehrle. [poster abstract]
Santa: Faster packet delivery for commonly wished replies. In ACM
SIGCOMM Poster, 2015.

[64] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar. Making middleboxes someone else’s problem: Network
processing as a cloud service. In ACM SIGCOMM, 2012.

[65] M.-K. Shin, K. Nam, S. Pack, and S. Lee. Verification of nfv
services: Problem statement and architecture. IETF Draft, 2014.

[66] R. Szabo, A. Csaszar, K. Pentikousis, M. Kind, and D. Daino.
Unifying carrier and cloud networks: Problem statement and
challenges. IETF Draft, 2014.

[67] T. Taleb. Toward carrier cloud: Potential, challenges, and solutions.
IEEE Wireless Communications, 21(3):80–91, 2014.

[68] T. Taleb, A. Ksentini, and A. Kobbane. Lightweight mobile core
networks for machine type communications. IEEE Access,
2:1128–1137, Sept. 2014.

[69] K. Vaidyanathan, W. Huang, L. Chai, and D. K. Panda. Designing
efficient asynchronous memory operations using hardware copy
engine: A case study with i/oat. In Parallel and Distributed
Processing Symposium, 2007. IPDPS 2007. IEEE International,
pages 1–8. IEEE, 2007.

[70] J. Whiteaker, F. Schneider, and R. Teixeira. Explaining packet delays
under virtualization. ACM CCR, 41(1):38–44, Jan. 2011.

[71] L. Xia, Q. Wu, D. King, H. Yokota, and N. Khan. Requirements and
use cases for virtual network functions. IETF Draft, 2014.

[72] H. Xie, Y. Li, J. Wang, D. Lopez, T. Tsou, and Y. Wen. vRGW:
Towards network function virtualization enabled by software defined
networking. In IEEE ICNP, 2013.

[73] Y. Zaki, L. Zhao, C. Goerg, and A. Timm-Giel. Lte wireless
virtualization and spectrum management. In IFIP WMNC, 2010.

[74] B. Zhang, X. Wang, R. Lai, L. Yang, Z. Wang, Y. Luo, and X. Li.
Evaluating and optimizing I/O virtualization in kernel-based virtual
machine (KVM). In Network and Parallel Computing. 2010.

	Introduction
	Network Functions Virtualization
	Standardization Activities
	SDN, Network Virtualization, NFV: What's the Difference?

	Use Cases
	Carrier Clouds
	Fixed Access Networks
	Radio Access Networks
	Network Core
	Security

	NFV Performance Today
	Virtual Packet Forwarding
	Hardware-Assisted Packet Forwarding
	Network Stack Offloading
	VM Network I/O Optimization
	Operating System Complexity

	Research Challenges
	NFV Performance Improvement
	NFV Performance Benchmarking
	Further NFV Research Challenges

	Summary
	Acknowledgements
	References

