CliMB: Enabling Network Function Composition with
Click Middleboxes

Rafael Laufer, Massimo Gallo

Nokia Bell Labs
first.last@nokia.com

ABSTRACT

Click has significant advantages for middlebox development,
including modularity, extensibility, and reprogrammability.
Despite these features, Click still has no native TCP support
and only uses nonblocking I/O, preventing its applicability
to middleboxes that require access to application data and
blocking 1/0. In this paper, we attempt to bridge this gap
by introducing Click middleboxes (CliMB). CliMB provides
a full-fledged modular TCP layer supporting TCP options,
congestion control, both blocking and nonblocking I/0, as
well as socket and zero-copy APIs to applications. As a
result, any TCP network function may now be realized in
Click using a modular L2-L7 design. As proof of concept, we
develop a zero-copy SOCKS proxy using CliMB that shows
up to 4x gains compared to an equivalent implementation
using the Linux in-kernel network stack.

CCS Concepts

eNetworks — Middle boxes / network appliances;
Programmable networks;

Keywords
Click router, Middle boxes, TCP

1. INTRODUCTION

Middleboxes are responsible for a variety of network func-
tions, such as network address translation, traffic filtering,
and load balancing, and are now as prevalent in enterprise
networks as routers and switches [18]. Due to performance
requirements, middleboxes have initially been implemented
in hardware and provisioned for peak load, being thus quite
expensive and providing limited flexibility. More recently,
software middleboxes have gained popularity because of their
increased flexibility and ability to scale with network load.
This trend towards network function virtualization (NFV)

*Work done at Nokia Bell Labs.

ACM SIGCOMM Computer Communication Review

Diego Perino*
Telefonica Research
diego.perino@telefonica.com

Anandatirtha Nandugudi

INRIA
anadatirtha.nandugudi@inria.fr

ignited novel approaches for deploying software middleboxes,
ranging from virtual machines [7, 13] to innovative software
designs [2, 14]. Nonetheless, the step towards a practical
architecture enabling modular L.2-L7 network functions has
not yet been made. This would promote code reuse and
cross-layer optimizations (e.g., zero copy) in middleboxes,
as well as allow the rapid deployment of new services.

Among existing approaches, Click [11] is likely the top
candidate for such an architecture due to its modularity and
extensibility. In particular, Click uses fine-grained elements
that connect together to realize the desired network func-
tion. This allows significant code reuse, as the same element
is used for different network functions. Click elements can
also be reconfigured on-the-fly and even the entire router
functionality may be remotely replaced via hot swapping,
without traffic disruption. Support for in-kernel execution
and multithreading are also available for high performance.

In spite of these advantages, two key limitations may still
prevent Click from being an integrated middlebox platform.
First, Click does not offer native TCP support for network
applications, restricting potential cross-layer optimizations
and stack customization. Instead, applications written in
Click must resort to the OS stack, which lacks flexibility and
may lead to severe I/O bottlenecks [8, 16]. Second, Click has
no support for blocking I/O primitives. This, in turn, may
impose a burden on developers to build applications with
asynchronous nonblocking I/O or waste CPU resources with
busy-waiting.

To overcome these limitations, we introduce in this pa-
per an architecture called CliMB that enables network func-
tion composition in Click. Along with the original Click el-
ements, CliMB enables users to overhaul the entire network
stack, if desired. For fast packet I/O, CliMB uses Intel®
DPDK [8] to achieve line rate in user space. For appli-
cations, CliMB introduces a standards-compliant modular
TCP implementation supporting TCP options, congestion
control, and RTT estimation. It exposes a socket API for
easily porting existing applications and a zero-copy API for
high performance. In addition to allowing nonblocking 1/0,
CliMB introduces blocking I/O support in Click. In this
case, the CPU context is saved if an I/O request cannot be
promptly completed and restored once it completes. This
provides network applications with the illusion of running
uninterrupted, eliminating complexity in their design.

With these features, CliMB can be used to deploy a vast
range of network functions and services requiring cross-layer
optimizations, such as L7 congestion control and zero copy,
or TCP connection termination, particularly useful for Split

Volume 46 Issue 4, October 2016

FromDevice HCounterq—»‘ ‘ ‘ ‘ ‘ H—>I> Shaper E|—+ ToDevice

receive p bush(p)
increment ¢
—Pushep) |
enqueue p
turn
return S ready to
== transmit
pull()
oull0) check t
dequeue
P q p return p
= update t
l %)

transmit p

Figure 1: Push and pull control flow in Click. Upon
arrival, a packet is pushed to downstream elements
until it is either stored, dropped, or transmitted.
When the output interface is ready, a packet is
pulled from upstream elements, if one is available.

TCP, L7 load balancing, L7 firewall, TLS/SSL termination
proxy, HTTP caching proxy, and reverse proxy. As proof of
concept, we implement a zero-copy SOCKS proxy server to
show how CliMB can be used to realize modular full-stack
middleboxes currently unsupported in Click. The server uses
synchronous I1/O multiplexing primitives provided by CliMB
to efficiently handle I/O events. We compare its perfor-
mance with an equivalent Linux implementation and show
up to 4x gains in throughput.

The remainder of the paper is organized as follows. In Sec-
tion 2, we provide an overview of Click and briefly discuss its
limitations to develop high-performance TCP middleboxes.
Section 3 then describes the proposed CliMB architecture
and its key components, namely, high-speed packet I/0O,
blocking 1/0, and Click TCP. In Section 4, we present our
preliminary results and show that, in addition to enabling
L2-L7 modularity, CliMB is also able to significantly im-
prove performance. Section 5 reviews the related work and
explains how CliMB is different than previous approaches.
Finally, Section 6 concludes the paper.

2. CLICK MODULAR ROUTER

2.1 Overview

Click is a software architecture for building modular and
extensible routers. A router in Click is built from a set
of fine-grained packet processing modules called elements,
which implement simple functions (e.g., IP route lookup). A
router configuration connects these elements together into a
directed graph, and packets traverse the edges of this graph.
Depending on the selected elements in the graph and the
connections among them, different network functions can
be implemented (e.g., IP router, Ethernet switch).

Connections between a pair of elements are established
by ports. Each element may define any number of input
and output ports to connect to other elements. These ports
must operate in either push or pull mode, depending on the
element implementation. On a push connection, the packet
starts at the source element and moves to the destination
element downstream. On a pull connection, in contrast, the
destination element requests a packet to the upstream source
element, which returns a packet if one is available or a null
pointer otherwise. In addition to push or pull, a port may

ACM SIGCOMM Computer Communication Review

also be agnostic and behave as either push or pull depending
on the other port it is connected to.

Figure 1 shows these concepts using a simple router that
forwards packets from one interface to another, measuring
the number of received packets and shaping output traffic.
For this purpose, Counter has a local counter ¢, Queue has
a packet list, and Shaper has a local timestamp t storing the
last time that a packet was pulled, used to limit the pulling
rate. In the figure, input ports are depicted as triangles and
output ports as rectangles. Push ports are black and pull
ports are white; agnostic ports are shown as either push or
pull with a double outline.

In its underlying implementation, Click employs a task
queue and runs an infinite loop that executes each task in
sequence. Tasks are basically element-defined functions that
require frequent CPU scheduling, and initiate a sequence of
push or pull requests. All packet processing in Click is ini-
tiated by tasks. In the previous example, both FromDewvice
and ToDevice have periodic tasks interacting with network
interfaces to receive or transmit packets, respectively. Most
elements, however, do not require their own task for CPU
access, since their push and pull methods are implicitly
scheduled when called by another task. This is notably the
case of the three intermediate elements in Figure 1. Once
a packet is pushed or pulled through the router graph, it
continues to be processed at each element along a path until
it is stored, dropped, or transmitted.

2.2 Limitations

Click has significant advantages as a platform for the de-
sign and implementation of middleboxes, including modu-
larity, remote reprogrammability, multithreading, and both
user and kernel space implementations. Despite these fea-
tures, a couple of limitations may still prevent Click from
being a complete solution for middleboxes:

No transport layer: Click does not have a native TCP
layer, which prevents the deployment of several middleboxes
requiring access to L7 data. Sockets (using the OS stack) are
in fact available in user space, but require a separate element
for each TCP connection, making it impractical for real-
world applications with dynamic connections. Inefficiencies
in the OS stack may also prevent elements from achieving
line rate [8].

Nonblocking I/O: Once a task is scheduled in Click, it
runs to completion. There is no way, for instance, to block a
task until a set of I/O operations complete. As a result, even
if a transport layer did exist in Click, applications would
have to employ nonblocking I/O to transfer network data,
imposing a burden on developers or wasting CPU resources
with busy-waiting. Moreover, porting applications relying
on blocking primitives to Click would be impractical.

3. CLIMB ARCHITECTURE

To overcome these limitations, we introduce an architec-
ture called Click middleboxes (CliMB) that enables novel
network functions using a modular and customizable L2-L7
stack, blocking I/O, and high-speed packet 1/O. This sec-
tion provides a brief overview of CliMB and its components.
Sections 3.1 and 3.2 describe CliMB packet I/O and block-
ing I/O design, respectively. Section 3.3 explains the TCP
implementation in CliMB, and Section 3.4 reviews its socket
and zero-copy APIs.

Volume 46 Issue 4, October 2016

3.1 PacketI/O

CliMB currently runs as a single thread in user space
Click. To provide high-speed packet I/O without the kernel
network stack, we implement an element that uses Intel®
Data Plane Development Kit (DPDK) to directly interface
with 10 GbE cards. The element has a task that frequently
polls the network card to fetch received packet batches. Each
fetched packet is then wrapped in a Click packet data struc-
ture and pushed out or temporarily buffered for future pull
calls.

The DPDK functionality in CliMB is similar to the one
provided by FastClick [3], with key improvements. In addi-
tion to the push mode, our DPDK element also supports pull
mode for transmissions and receptions. Notification signals
can also be received or transmitted, indicating queue occu-
pancy from or to other elements. Additionally, we exploit
the NIC to perform both IP and TCP checksum offloading
as well as hardware flow control to avoid buffer overflows.

Using a single core, our DPDK element is able to achieve
10 Gbps with 64-byte packets in both push and pull modes,
during both transmission and reception.

3.2 Blocking 1/0

Click natively supports nonblocking I/O through its push
and pull methods; however, it has no support for blocking
1/0. For network applications, blocking I/O has the advan-
tage of being simpler to implement on and often providing
equivalent performance. Moreover, blocking I/0 is also re-
quired to support efficient system calls (e.g., poll) for socket
1/0 multiplexing.

To provide middlebox applications with a broader range
of I/O options, CliMB implements blocking I/O in Click.
We introduce the concept of blocking tasks, which can yield
the CPU to other eligible tasks if a given condition does
not hold, e.g., an 1/O request that cannot be promptly com-
pleted. When rescheduled, the task resumes exactly where it
left off, providing users with the illusion of continuity. This
mimics the behavior of user-level threads in Linux under I/O
requests.

Task scheduling is still cooperative, as each task must ex-
plicitly yield the CPU if waiting for an I/O request to com-
plete. This does not occur in the task itself, but rather
within the API-provided functions (Section 3.4) when an
I/0 request cannot be immediately completed. When the
1/0 request is finally completed, the task is rescheduled for
execution. Blocking tasks are backward compatible with
regular tasks, requiring no modifications to the Click task
scheduler.

Each blocking task has its own call stack and runs as a
separate context within the same user-level process. Context
switching between tasks is light-weight, saving and restoring
a handful of registers required for task execution. CliMB
uses low-level functions to save and restore the user-level
context, just as in POSIX threads. Different from threads,
however, CliMB has complete control over the task sched-
uler and relies on cooperative, as opposed to preemptive,
scheduling.

3.3 Click TCP

To enable modular L2-L.7 middlebox development, CliMB
implements a TCP transport layer in Click. Our Click TCP
(¢TCP) implementation is in full compliance with standards
(RFCs 793 and 1122), supporting TCP options (RFC 7323),

ACM SIGCOMM Computer Communication Review

NewReno congestion control (RFCs 5681 and 6582), as well
as timer management and RTT estimation (RFC 6298). Over-
all, cTCP is a compound element composed of more than 40
elements that jointly implement the TCP protocol. These
elements can be easily extended or replaced to experiment
with alternatives (e.g., congestion control).

Figure 2 depicts the ¢TCP configuration graph for in-
coming TCP packets. In essence, elements access and/or
modify the TCP control block (TCB) of the flow as the
packet moves along its path. The vertical paths represent
the direction that the received packets usually take. Other
paths represent a disruption in the expected packet flow,
e.g., TCPCheckSeqNo sends an ACK if all data in the packet
is out of the receive window.

Most elements in ¢cTCP process packets using only the
TCB information. For example, TCPTrimPacket trims off
any out-of-window data from the packet, ensuring that the
remaining data is within the receive window. TCPReordering
enforces in-order delivery by buffering out-of-order packets
and pushing them out in sequence once the gap is finally
filled. TCPProcessRst, TCPProcessSyn, TCPProcessAck,
and T'CPProcessFin inspect the respective TCP flags and
act according to the standards. In presence of new data,
TCPProcessTzxt clones the packet, strips its headers, and
places it on the RX queue for the application to process.

Other elements in ¢TCP require information previously
computed by another upstream element. This is supported
in Click through packet annotations, which are specific meta-
data carried within the packet. Packet annotations used in
c¢TCP include:

TCB pointer: The TCB table is stored in TCPInfo and
accessed by other elements using static functions. For each
packet, TCPFlowLookup looks the TCP flow up in the table
and sets a pointer in the annotations to allow downstream
elements to access/modify the TCB.

RTT measurement: TCPAckOptionsParse computes the
round-trip time (RTT) from the TCP timestamp option and
sets it as an annotation. If this option is not supported,
TCPRtxEnqueue timestamps each packet before storing it in
the retransmission queue. In both cases, TCPEstimateRTT
uses these annotations to estimate the RT'T and update the
retransmission timeout.

Acknowledged bytes: TCPProcessAck computes the num-
ber of acknowledged bytes in each packet and sets an anno-
tation used by TCPNewRenoAck to increase the congestion
window. If this number is zero and a few other conditions
hold, the packet is considered a duplicate ACK, which may
trigger a fast retransmission.

Flags: A few flags are used to indicate certain actions to
other elements, such as sending an acknowledgment back
after processing the packet. This flag is set, for instance,
by TCPProcessTxt when the received packet has new data.
The flag is checked by TCPAckRequired and the packet is
pushed out if the flag is set, and dropped otherwise.
Finally, timers are used in ¢TCP for retransmission time-
outs, delayed ACKs, and TCP keepalive messages. A re-
transmission timeout occurs when transmitted data is not
acknowledged after some time. Acknowledgments are sent
once for every two received data packets or if 500 ms pass
since the last data packet is received. TCP keepalive mes-
sages are periodically sent to test for connectivity. Due to

Volume 46 Issue 4, October 2016

from Network

TCPFlowLookup TCPInfo
Iml
v
TCPStateDemux
| L | |
TCPAckOptionsParse TCPSynSent TCPListen TCPClosed
Il . Il J J Tl J il
l 510 ACK l ~— to RST \l \.l
TCPEstimateRTT TCPSynOptionsParse TCPSynOptionsParse TCPResetter
III Iyl Il Il
Y \ to CKSUM
TCPCheckSeqNo TCPEstimateRTT
Iyl | Iyl
| “—toACK
4 v
TCPTrimPacket TCPNewRenoSyn TCPNewRenoSyn
T Iyl Il
T to ACK to SYN
TCPReordering
| |
| “—>toACK
TCPProcessRst
Iyl
TCPProcessSyn
i |
l ST RST SYN RST A(lZK RTX
TCPP”,)__CIESSéCk - TCPReplacePacket TCPReplacePacket TCPReplacePacket
l __ —1to0RST = =)
L’ to ACK l ‘L/_ ACK*
TCPProcessTxt v Y v .
T TCPSynOptionsEncap TCPAckOptionsEncap TCPAckOptionsEncap TCPUpdateTimestamp
N i N
TCPPr(';cessFm TCPSynEncap TCPRstEncap TCPAckEncap TCPUpdateWindow
! 1 T 1
TCPNewRenoAck N N N \
Il m TCPIPEncap TCPIPEncap TCPIPEncap TCPUpdateAckNo
l s to RTX =) & =)
TCPAckRequired CKSUM
Iyl
TCPReplacePacket SetTCPChecksum
T I
v Y
TCPRateControl SetIPChecksum
T I
: ,
TCPSegmentation TCPRtxEnqueue
| Il
ACK* to Network

Figure 2: Click TCP (cTCP) configuration graph for incoming network packets.

space constraints, the cTCP configuration graphs for timers
and APIs are omitted.

3.4 Application Programming Interfaces

In CliMB, one or multiple Click elements implement the
application logic and communicate with ¢cTCP using APIs.
The design of the cTCP APIs is driven by two main goals:
(i) minimize the effort required to port existing applications
to ¢TCP; and (ii) provide users with zero-copy primitives
to guarantee high performance. As these are conflicting ob-

ACM SIGCOMM Computer Communication Review

jectives, ¢cTCP provides two APIs from which application
developers may choose to meet their requirements.

Socket API: Application elements interface with the cTCP
layer using the well-known socket API. For each socket func-
tion (e.g., send), cTCP provides a corresponding function
(e.g., click_send) that works both in blocking or nonblock-
ing mode. As in Linux, the operation mode is set on a
per-socket basis via the SOCK_NONBLOCK flag. Applications
in CliMB run within a blocking task, which is unsched-
uled when an I/O request cannot be promptly completed.

Volume 46 Issue 4, October 2016

This occurs, for instance, when the RX queue is empty and
click_recv is called. Once the I/O request completes, the
task is rescheduled for execution again.

In addition to blocking, sockets may also operate in non-
blocking mode. In this case, the aforementioned calls would
return right away with an error. To avoid busy-waiting on
I/0, a click_poll function is provided to monitor multiple
socket descriptors at the same time. If no socket is ready to
perform I/O, the function blocks the calling task. In future
work, cTCP will also provide functions based on select and
epoll_wait.

The socket API is ideal for porting existing applications to
CliMB by just replacing the socket system calls. However,
memory copies are still required to transfer data between
the application and the ¢cTCP layer.

Zero-copy API: ¢cTCP provides an alternative to avoid
data copy during transmissions and receptions. For trans-
missions, applications must first allocate a packet directly
from the DPDK memory pool and write data into it, leav-
ing some headroom for protocol headers. The application
then sends the data packet with the zero-copy click_push
function. For receptions, it calls click_pull to retrieve a
packet; these are the actual packets where the data came in.
To amortize per-packet overhead, both functions also send
and receive batches, and may operate in either blocking or
nonblocking mode. Using the zero-copy API, it is possible,
for instance, to build efficient applications that never have
to copy data around, as shown in the next section.

4. PRELIMINARY RESULTS

We perform two experiments to validate the ¢cTCP im-
plementation. First, we run a microbenchmark where a file
is transferred from a client to a server running on two ma-
chines directly connected to each other. The goal is to de-
termine if cTCP is able to sustain line rate. We then use the
socket and zero-copy APIs to implement a SOCKS4 proxy
server through which multiple clients and servers connect.
Our experimental setup consists of 5 machines using Intel
Xeon® 16-core E5-2630v3 2.4GHz processors, 16 GB RAM,
and equipped with an Intel® 82599ES network card con-
taining two 10 GbE interfaces. The machines run Ubuntu
14.04 (kernel 4.4.0-14), Click 2.1, and Intel® DPDK 2.2.0.

File transfer: To first validate the cTCP implementation
in CliMB, we ran a simple test where a ¢TCP client appli-
cation connects to a cTCP server, sends a 10 GB file using
the zero-copy API (i.e., click_push) and, when finished,
gracefully closes the connection. The cTCP server listens
for incoming connections and, once the three-way handshake
is over, waits for incoming data using the zero-copy API
(i.e., click_pull). When a data packet is received, the
server just discards it and waits for more data. Both the
client and the server tasks use blocking I/O to wait if the
TX queue is full or if the RX queue is empty, respectively.
Using a single core at each host, our cTCP implementation is
able to achieve the maximum data throughput of 9.41 Gbps.

SOCKS4 proxy server: As a proof of concept, we built
a zero-copy proxy server that acts on behalf of clients. The
server consists of a single element running a blocking task
that implements the Socket Secure 4 (SOCKS4) protocol.
After it first starts listening for incoming connections, the
proxy runs a loop that calls click_poll to monitor all open
sockets and handle any pending I/O. Once a connection is

ACM SIGCOMM Computer Communication Review

50K

CliMB
c¢TCP+Linux
Linux

40K

30K

20K

10K

Connections per second

256 1K 4K 16K 64K 256K IM
Object size (bytes)

Figure 3: Performance of a SOCKS4 proxy server
in both CliMB and Linux for different object sizes.

accepted, it waits for the client to send the SOCKS request
containing the IP address and TCP port of the destination
server. With this information, a connection is then estab-
lished to the server and a response is sent back to notify
the client that its request was granted. From this moment
on, any data received from either the client or the server is
forwarded to the other party using the zero-copy API.

For performance evaluation, we compare the proposed
CliMB SOCKS4 proxy server with its counterpart without
DPDK (i.e., using the FromDevice and ToDevice elements)
and with an equivalent implementation entirely in Linux.
We use two machines as clients (curl), one as the proxy
server, and two as web servers (1ighttpd). Each client ma-
chine runs 32 curl processes that continuously open a con-
nection to a web server via the SOCKS proxy, request some
data, and then close the connection; this experiment lasts
for 60 seconds. Each server machine runs lighttpd with 15
threads to accommodate the network load. Figure 3 shows
the number of connections per second for various object sizes
requested by the clients. We see that CliMB outperforms
Linux by up to 4x for small objects. When using Linux for
packet I/0, ¢TCP still has a 2x gain; the remaining gain in
CliMB is thus due to DPDK acceleration.

S. RELATED WORK

Click and its extensions: Click and its modular data
plane are initially proposed in [11] and, since then, have
been extended in multiple directions. For instance, high-
speed packet I/O is now available in Click [3, 8, 16]. To
increase throughput, support for Click elements running on
GPUs has also been recently added [10, 19]. In addition,
the increasing popularity of NFV motivated the design of a
lightweight OS based on Click [13]. Although reaching line
rate and enabling simple middlebox functionality, these sys-
tems do not have a TCP layer. In contrast, CliMB extends
Click to support a full-fledged TCP implementation, which
enables modular network function composition for complex
middleboxes.

Modular NFV: Click has inspired other modular network
function management systems, such as Slick [2], Openbox [6],
and Elastic Edge [14]. These systems focus on control plane
operations, such as data plane element placement, network
function scaling, and traffic steering. For the data plane,
FlowOS [5] is proposed as a middlebox platform that en-
ables flow processing, but without TCP support. CoMb [17]
and xOMB [1] use Click to consolidate middleboxes through

Volume 46 Issue 4, October 2016

the composition of different L7 elements. Both rely on the
OS implementation for packet I/O and transport layer, re-
ducing customization and performance.

Frameworks enabling stack customization of L2-L7 are
proposed in [15, 20]. PDP [15] introduces the design of a
programmable data plane focusing on hardware offloading.
In [20] a preliminary design of a modular middlebox platform
based on mTCP [9] is presented. In contrast to existing
work, CliMB introduces ¢cT'CP and blocking I/O primitives
in Click to exploit its built-in modularity and extensibility,
while also offering easy portability for existing applications,
L2-L7 stack customization, and cross-layer optimization.

User-level stack: Efficient user-level network stacks have
been proposed to overcome 1/O inefficiencies of operating
systems [4, 9, 12]. IX [4] is a data plane operating sys-
tem that separates the control plane from the data plane.
mTCP [9] is a user-level TCP implementation proposed for
multicore systems. Sandstorm [12] proposes a clean-slate
network stack providing zero-copy APIs for each protocol
layer. Different from [4, 9, 12], CliMB is based on the Click
architecture to guarantee modularity and extensibility to
middleboxes. It provides a user-space TCP implementation
offering both a L2-L7 zero-copy API for high performance
as well as a socket API for ease of portability.

6. CONCLUSIONS

In this paper we presented ClIMB, an architecture that
enables the design and implementation of Click middleboxes.
CliMB introduces the concept of blocking tasks in Click to
allow network applications to efficiently wait on I/O without
consuming resources. It also provides a full-fledged modular
TCP implementation, supporting blocking and nonblocking
I/0 as well as socket and zero-copy APIs for application
portability and high performance. With the introduction
of a TCP layer, CliMB enables L2-L7 stack customization
and cross-layer optimizations that were not possible before
in Click. As proof of concept, we implemented a SOCKS4
proxy server in CliMB whose preliminary results provide
encouraging performance gains. CliMB source code will be
publicly available in the near future.

Our future work will focus first in extending CliMB for
multicore scalability, enabling flow-level core affinity from
L2 to L7. This will enable TCP middleboxes to achieve high
speeds without requiring synchronization primitives. With
high performance in multicore architectures, our goal is to
explore Click reprogrammability for redesigning the middle-
box functionality on-the-fly. This will enable NFV provi-
sioning by allowing controllers to spawn new modular L2-L7
services without incurring the high I/O overhead of virtual-
ization. Finally, our intention is to provide a NF'V control
plane to enable network function orchestration across the
network, and balance the load among different middleboxes
according to their resource usage.

7. REFERENCES
[1] J. Anderson, R. Braud, R. Kapoor, G. Porter, and
A. Vahdat. xOMB: Extensible Open Middleboxes with
Commodity Servers. In Proc. of ACM/IEEE ANCS,
2012.
[2] B. Anwer, T. Benson, N. Feamster, and D. Levin.

Programming Slick Network Functions. In Proc. of
ACM SOSR, 2015.

ACM SIGCOMM Computer Communication Review

[3] T. Barbette, C. Soldani, and L. Mathy. Fast Userspace
Packet Processing. In Proc. of ACM/IEEE ANCS,
2015.

[4] A. Belay, G. Prekas, A. Klimovic, S. Grossman,

C. Kozyrakis, and E. Bugnion. IX: A Protected
Dataplane Operating System for High Throughput
and Low Latency. In Proc. of USENIX OSDI, 2014.

[5] M. Bezahaf, A. Alim, and L. Mathy. FlowOS: A
Flow-based Platform for Middleboxes. In Proc. of
ACM HotMiddleboxes, 2013.

[6] A. Bremler-Barr, Y. Harchol, and D. Hay. OpenBox:
A Software-Defined Framework for Developing,
Deploying, and Managing Network Functions. In Proc.
of ACM SIGCOMM, 2016.

[7] J. Hwang, K. K. Ramakrishnan, and T. Wood.
NetVM: High Performance and Flexible Networking
Using Virtualization on Commodity Platforms. In
Proc. of USENIX NSDI, 2014.

[8] Intel DPDK framework. http://dpdk.org.

[9] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Thm,
D. Han, and K. Park. mTCP: a Highly Scalable
User-level TCP Stack for Multicore Systems. In Proc.
of USENIX NSDI, 2014.

[10] J. Kim, K. Jang, K. Lee, S. Ma, J. Shim, and
S. Moon. NBA (Network Balancing Act): A
High-performance Packet Processing Framework for
Heterogeneous Processors. In Proc. of EuroSys, 2015.

[11] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click Modular Router. ACM Trans.
Comput. Syst., 2000.

[12] I. Marinos, R. N. Watson, and M. Handley. Network
Stack Specialization for Performance. In Proc. of
ACM SIGCOMM, 2014.

[13] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu,

M. Honda, R. Bifulco, and F. Huici. ClickOS and the
Art of Network Function Virtualization. In Proc. of
USENIX NSDI, 2014.

[14] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda,

S. Ratnasamy, L. Rizzo, and S. Shenker. E2: A
Framework for NFV Applications. In Proc. of ACM
SOSP, 2015.

[15] D. Perino, M. Gallo, R. Laufer, Z. B. Houidi, and
F. Pianese. A Programmable Data Plane for
Heterogeneous NFV Platforms. In Proc. of IEEE
INFOCOM SWFAN workshop, 2016.

[16] L. Rizzo. netmap: A Novel Framework for Fast Packet
I/0O. In Proc. of USENIX Security, 2012.

[17] V. Sekar, N. Egi, S. Ratnasamy, M. Reiter, and
G. Shi. Design and Implementation of a Consolidated
Middlebox Architecture. In Proc. of USENIX NSDI,
2012.

[18] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy,

S. Ratnasamy, and V. Sekar. Making Middleboxes
Someone Else’s Problem: Network Processing As a
Cloud Service. In Proc. of ACM SIGCOMM, 2012.

[19] W. Sun and R. Ricci. Fast and Flexible: Parallel
Packet Processing with GPUs and Click. In Proc. of
IEEE/ACM ANCS, 2013.

[20] S. Woo, K. Jang, D. Han, and K. Park. Towards an
Open Middlebox Platform for Modular Function
Composition. In Proc. of USENIX NSDI, poster, 2012.

Volume 46 Issue 4, October 2016

