
Public Review for

A Database Approach to

SDN Control Plane Design

Bruce Davie, Teemu Koponen, Justin Pettit, Ben Pfa↵,

Martin Casado, Natasha Gude, Amar Padmanabhan, Tim Petty,

Kenneth Duda and Anupam Chanda

This paper’s reviewers had mixed feelings on the paper. On one hand, they
were impressed and surprised that the authors opted for using a database
technique to solve a networking problem instead of designing a new proto-
col with specific properties. This led to the design of the open-source OVSDB
that already enabled several networking vendors to design interoperable prod-
ucts. On the other hand, the reviewers found that the paper contained too
many engineering details and did not provide a quantitative evaluation of
the proposed solution. Some reviewers suggested to summarise the paper in
6 pages, i.e. the normal page limit for technical papers published in CCR.
In the end, we agreed to keep the engineering details in the paper because
we expect that they could be of interest to the community as they show the
details that matter in industry. Furthermore, the paper is tagged with the
Artifacts Available badge given the availability of the OVSDB open-source
software.

Public review written by

Olivier Bonaventure
Université catholique de Louvain

ACM SIGCOMM Computer Communication Review Volume 47 Issue 1, January 2017

15



A Database Approach to SDN Control Plane Design

Bruce Davie

VMware

bdavie@vmware.com

Teemu Koponen

Styra

teemu.koponen@iki.fi

Ben Pfaff

VMware

blp@ovn.org

Justin Pettit

VMware

jpettit@ovn.org

Anupam Chanda

VMware

achanda@vmware.com

Martin Casado

VMware

mcasado@vmware.com

Kenneth Duda

Arista Networks

kduda@arista.com

Natasha Gude & Amar

Padmanabhan

Facebook

Tim Petty

VMware

tpetty@vmware.com

ABSTRACT
Software-defined networking (SDN) is a well-known example of a re-
search idea that has been reduced to practice in numerous settings.
Network virtualization has been successfully developed commer-
cially using SDN techniques. This paper describes our experience
in developing production-ready, multi-vendor implementations of
a complex network virtualization system. Having struggled with
a traditional network protocol approach (based on OpenFlow) to
achieving interoperability among vendors, we adopted a new ap-
proach. We focused first on defining the control information content
and then used a generic database protocol to synchronize state be-
tween the elements. Within less than nine months of starting the
design, we had achieved basic interoperability between our network
virtualization controller and the hardware switches of six vendors.
This was a qualitative improvement on our decidedly mixed experi-
ence using OpenFlow. We found a number of benefits to the database
approach, such as speed of implementation, greater hardware di-
versity, the ability to abstract away implementation details of the
hardware, clarified state consistency model, and extensibility of the
overall system.

CCS Concepts
•Networks ! Network design principles; Network protocol de-
sign; Network manageability; Programmable networks;

Keywords
Software-Defined Networking (SDN); protocols; protocol design;
interoperability; databases

1 Introduction
One of the fundamental challenges in networking is the need for in-
teroperability among systems and devices implemented by different
teams working in different companies. For this reason, a great deal
of effort is expended in the definition of protocols: precise defini-
tions of the messages that are exchanged between systems and the
procedures for sending, receiving, and processing those messages.
Protocol definition is a complex and time-consuming task; it can
take years to produce a specification (as many IETF attendees will
attest). Extending such protocols to support new or unanticipated
functionality can be an equally cumbersome process.

This paper describes our experiences in tackling such an inter-
operability problem in a commercial setting. Specifically, we had
developed a network virtualization system [15] — a highly scalable,

SDN-based system that supports the creation and management of
virtual networks [13]. At the time, the “network virtualization edge”
(NVE) was implemented only in software, using Open vSwitch [26]
running on general purpose servers. We wanted to add hardware-
based implementations of the NVE, primarily to provide higher
performance.

Hardware switches that could potentially serve the NVE function
are widely available, and data plane interoperability had been largely
addressed by widespread support for the VXLAN tunnel encapsu-
lation [18]. However, no existing control plane protocol clearly
met our needs. Our prior experience with OpenFlow [22], which
might have appeared to be the obvious choice, led us to consider
alternative approaches.

Unlike many operators of large data centers, we are forced to
accept a fairly heterogeneous environment. In particular, many of
our customers have strong preferences about their choice of hard-
ware switch vendor(s), so it is important for us to accommodate a
wide diversity of switch implementations. Quite early in the process
we found ourselves working with six different hardware vendors,
with different switch hardware and software implementations. The
forwarding models of their ASICs varied considerably. We needed
a solution that could be implemented quickly by all these disparate
vendors on their existing hardware.

One metric of success in this effort is the speed with which we
were able to achieve interoperability. We obtained a basic level
of interoperability with all six vendors within nine months of our
first meeting to discuss the problem. Equally importantly, new
capabilities that were either not fully defined or not anticipated in
the initial design were readily added as the project progressed.

This “success”, however, was built on the back of some decidedly
less successful prior experience. Before settling on the database
approach described in this paper, we had made two separate attempts
to implement a similar feature set using OpenFlow to control a
single vendor’s switch hardware. These efforts (detailed in §4)
demonstrated sufficient shortcomings with OpenFlow for this use
case that we decided to take a hard look at a different approach.

Ultimately, we decided to apply database principles to the prob-
lem. That is, we didn’t set out to design a protocol—we set out
to model the information that needed to be shared among various
components of the system, and then leveraged standard database
techniques to distribute the appropriate state to the components that
needed it. In this way, we abstracted away the details of the control
wire protocol, and separated the state synchronization machinery
from the networking functions. This is a sharp contrast to tradi-
tional network control protocol design, where state synchronization,

ACM SIGCOMM Computer Communication Review Volume 47 Issue 1, January 2017

16



semantics of network function (e.g., route computation), and wire
representation are conflated into a single mechanism.1

This design choice had a number of benefits:

• We spent zero time specifying or arguing about the wire
format.

• Any time we wanted to make a change to the interaction
between the network virtualization controller and the NVE,
we extended or modified the database schema. There was
never any need to change the implementation of the wire
protocol or the databases.

• We could simplify the implementations through use of a
strong consistency model provided by the database. There
was no need to deal with the complexities of eventual consis-
tency, typical with control protocols.

• We could leverage a great deal of existing software (the
database server, client libraries, and other software compo-
nents).

This paper makes three main points:

• We present the experience of developing a commercial, production-
quality system that has demonstrated interoperability among a
logically centralized software controller and hardware switches
from at least six independent vendors. The system is in pro-
duction use at several customer sites.

• We show the value of a database approach to network product
development: decoupling the responsibilities of control plane
protocol functionality lets system design work focus on the
high-level information model rather than the low-level wire
format.

• We demonstrate the value of using a higher level of abstrac-
tion for the switch management in an SDN system than that
provided by OpenFlow.

Along the way, we describe things that didn’t go to plan and try to
extract lessons from our mistakes.

We observe that this is an “experience” paper, as opposed to a
more traditional “design, implement, evaluate” paper. The experi-
ence has been in building and testing multi-vendor systems to be
deployed and operated by others, rather than in operating a network.
We share the experience of developing a large commercial system
under the constraints imposed by the need to deal with widely dis-
parate implementations of both hardware and software. We evaluate
our work more in terms of number of successfully interoperating im-
plementations than in, say, performance. Acceptable performance of
the control plane was something that we tested (see §8), but perfor-
mance is not the main focus of this paper.2 We describe experiences
where things didn’t go to plan, and attempt to extract lessons from
our mistakes.

We have structured the paper as follows. In §2 and §3, we give
a brief overview of related work and network virtualization, as
well as the requirements that led to our work on hardware-based
NVEs. §4 lays out the design approach that we followed and the
earlier challenges that led to it. Then, in §5 and §6, we discuss
the implementation and integration of the database technology with
controller and hardware switches. We did not anticipate all the
requirements early on (expectedly) and in §7 we detail how the
1It’s worth emphasizing we did not modify the data plane protocols.
2Data plane performance, in particular, is determined by hardware
implementation and is independent of our design choices.

system significantly evolved over the course of integration. Finally,
we discuss the experience of testing the system in our own labs and
those of our partners in §8, before summarizing our conclusions.

A note on replicability. The work described in this paper depends
heavily on the use of open source software components, the details
of which are presented below. Much of the paper describes our
design and implementation experience, which is qualitative and thus
difficult to reproduce. However, a sufficient set of software artifacts
are available for other researchers to create their own NVE and test
its interoperability against an open source SDN controller. Further
details are provided in §8.5.

2 Background and Related Work
Our initial work on network virtualization and SDN [13,14] laid the
foundation for this paper. Here we focus on the challenge of multi-
vendor interoperability, which raises a host of practical problems.

The traditional approach to addressing multi-vendor interoper-
ability is to design a protocol. We explain below how a database
approach differs from traditional protocol design, and shows the
benefits that accrued from taking that approach. In this context, both
a “new” protocol like OpenFlow [22] and mainstream protocols
such as BGP [28] are examples of traditional protocol design.

Several in the community have applied principles of databases to
network problems. In particular, declarative routing [16, 17] consid-
ers modeling route computation as a database query problem. We
are tackling a significantly different problem space: the synchroniza-
tion of state among controllers and switches, not the computation of
routing state.

Chen et al. [3, 4] have argued for the benefits of a declarative
approach to the configuration and management of networks, but this
work assumes standard networking protocols (BGP, IS-IS, etc.) still
provide the control plane. Conversely, Reitblatt et al. explored the
benefits of stronger consistency on SDN data planes [27]. Our focus
is on consistency and interoperability in control plane protocols.

Statesman [32] exposes overall datacenter network state as a
set of databases for management applications. It differs from our
work both in that it focuses on maintaining network-wide safety
and performance invariants rather than the control plane interactions
between switches and controller, and in that it does not tackle the
issues of multi-vendor interoperability.

It is also interesting to compare our work against that of the megas-
cale data center operators such as Google [30] and Facebook [1].
Facebook reports that they use a conventional protocol—BGP4—as
the control plane for the network. The megascale operators strive
for homogeneity (and can achieve it) as an important simplification
that enables them to operate efficiently at extremely large scale. Our
core problem is that we are required by our customers to support
heterogeneity, both in terms of hardware (lots of different switch
ASICs with distinct forwarding capabilities) and software (imple-
mentations by many different teams). In essence, this paper is about
how we deal with that heterogeneity.

An interesting similarity between our work and that of the megas-
cale operators is the reliance on software tools to abstract away
low-level communication details from application endpoints. For
example, Facebook makes use of Thrift [31] to enable transport-
independent RPC services for its applications, and Google uses
protocol buffers (protobufs) [8] to provide a convenient way to en-
code structured application data for transmission over the wire. In
abstracting away the details of the wire protocol, OVSDB gave us
the same benefits of these tools, while also providing a suitable in-
formation exchange mechanism for our particular problem domain.

ACM SIGCOMM Computer Communication Review Volume 47 Issue 1, January 2017

17



3 Network Virtualization Overview
In this section, we provide relevant background to our efforts. We
first give an overview of network virtualization in multi-tenant data-
centers in general before detailing our implementation of network
virtualization, NSX. We then set out to discuss the particular use
cases and reasons driving towards the need to integrate hardware-
based NVEs to NSX.

3.1 System
While there is some range of definitions of network virtualization,
most recent descriptions include the creation of isolated and inde-
pendently managed logical networks which come with their own ad-
dressing, topologies, and service models on top of a shared physical
network [13, 15]. This decoupling of physical and logical network
constructs is key to the power of network virtualization: in the typ-
ical deployment environment, a multi-tenant datacenter, it allows
virtualized tenant workloads to remain unaware of changes in the
physical network, all while the provider offloads the management
of logical networks to its tenants.

Using the terminology of [15], it is the responsibility of Network
Virtualization Edges (NVEs) to implement the network virtualiza-
tion data plane. In NSX, NVEs have little intelligence and do not
communicate with each other to compute forwarding state. Instead,
it is a centralized controller cluster that calculates the state neces-
sary to realize logical networks, and the controller programs the
virtual switches acting as the NVEs accordingly. OVSDB is used
to configure the virtual switches, and flow tables are programmed
using OpenFlow. In this sense, the NSX system looks like a fairly
standard SDN design: centralized control, distributed data plane,
and simple switches.

In the data plane, NVEs use a network virtualization encapsula-
tion protocol, such as VXLAN, to encapsulate the logical packets
before sending them to the receiving VM. By using encapsulation
and codifying logical network information into the encapsulation
header, they provide isolation among logical networks, as well as
between the physical and logical networks. The design of NSX and
its NVE functionality is similar to the design discussed in [13].

To provide tenant VMs with a faithful duplication of the physical
network service model, the NSX controller builds all logical packet
forwarding operations on a logical datapath abstraction. For the
tenant VMs, logical datapaths behave identically to physical ASIC
packet forwarding pipelines: after a VM sends a packet, the packet
traverses through a sequence of forwarding tables ultimately forming
a forwarding decision, after which the packet is sent towards the
next-hop logical datapath. The process repeats with the next logical
datapath, until the final, receiving logical destination port has been
reached. Using the current known location of the corresponding
VM, the packet is then unicasted over a tunnel across the physical
network to the receiving VM. There are two exceptions to this model
which we discuss now.

Unlike a unicast packet tunneled from a source to a destination
hypervisor, logical broadcast and multicast traffic requires packet
replication. In many multi-tenant datacenters, the physical network
provides only unicast L3 connectivity because IP multicast is con-
sidered unmanageable and unreliable at scale. NSX implements two
approaches to avoid relying on physical multicast. First, the NVEs
can unicast duplicate packets to all receiving NVEs. This may result
in excessive load (for instance, due to limited uplink NIC capacity),
and therefore NSX allows the NVEs to offload the replication to
dedicated service nodes, which act as a simple multicast overlay for
NVEs to use.

The second exception to the hypervisor virtual switch performing
first-hop processing is the interfacing of logical networks with the

physical world—that is, non-virtualized workloads and systems
outside the virtualized data center. We discuss these in the following
section.

3.2 Hardware Virtualization Edge
For traffic originating or terminating in hypervisors, a virtual switch
is the natural “edge” of the network, being the first switch to touch
packets originating in a VM. However, for traffic that enters or exits
the logical network from non-virtualized workloads (i.e., “bare-
metal” servers without a hypervisor and associated virtual switch)
or external to the data center (“north-south” traffic), there are more
options to consider for the NVE. Specifically, quite a number of
hardware switches and routers could potentially implement the NVE
function. These devices typically support line-rate encapsulation
and decapsulation of traffic with a network virtualization overlay
encapsulation such as VXLAN.

To interconnect non-virtualized workloads and provide north-
south connectivity, prior to the start of this project we implemented
a gateway based on an x86 server “appliance” using a standalone in-
stance of Open vSwitch (with no hypervisor). With recent advances
in x86-based forwarding, e.g., [5, 6, 11], the latest versions of Open
vSwitch running on x86 provide fairly high performance (in the 10
Gbps range) and multiple gateways can be deployed to scale out
the aggregate bandwidth. Nevertheless, hardware-based switches
still substantially outperform x86-based forwarding. For example,
top-of-rack (ToR) switches occupying 1 RU (one rack unit) are
widely available with 32 ports of 40 Gbps, for a total throughput of
1.28 Tbps, well beyond that achievable by an x86 server. The high
port density of a ToR switch, compared to a server with a handful
of NICs, is also attractive in this environment, especially if there
are many non-virtualized servers to be connected to the network
virtualization overlay.

We often heard from customers that managing physical ports
(those connected to bare-metal servers from the hardware NVE)
should be as similar as possible to managing virtual ports (those
that connect a VM to a virtual switch). This implies the ability to
configure access control list (ACL) policies on physical ports just as
we do on virtual ports.

North-south traffic is another use case. Many data centers use one
or more routers with specific WAN (wide area network) features to
handle such traffic. Given such a router with built-in support for
VXLAN encapsulation, it is appealing to use such as device as the
NVE, rather than having to hop through an x86 gateway en route to
the WAN router.

Finally, there may be an argument in favor of using hardware-
based NVEs to minimize latency. It’s not yet clear if this is a
compelling use case, in part because there are so many other sources
of latency aside from the NVE.

Hardware switches do come with their own constraints. An ASIC
datapath is relatively inflexible compared to one implemented on a
general-purpose CPU, and significant changes of functionality have
to wait for a new ASIC development cycle (typically years) as well
as a replacement of physical hardware, with cost and availability
implications. By contrast, a software-based edge can be upgraded
relatively frequently. For these reasons, we see many production
deployments of network virtualization systems using the software-
based gateway successfully, and we expect that to continue, at least
till next-generation programmable hardware data planes [2] become
widely available in production environments.

A few additional factors impact the design and implementation
of a hardware NVE. First, the control plane CPU of a commercial
switch is often relatively underpowered. This is not fundamental, but
still represents the current state of the industry. Second, a hardware

ACM SIGCOMM Computer Communication Review Volume 47 Issue 1, January 2017

18



switch generally must support a range of configuration interfaces,
such as command line and API-driven configuration. These varied
models needed to be accommodated in our design.

4 Design Approach
In tackling the problem of adding a hardware NVE to our system,
our first question was: how should the central controller communi-
cate with the NVE? We decomposed this question into two parts:
determining the appropriate abstractions for the information to be
exchanged and establishing a suitable mechanism for synchronizing
that information.

As described in more detail shortly, the first step led us to realize
that we didn’t need to operate on low-level forwarding state (as
OpenFlow does, for example). The second step led us to the conclu-
sion that we could treat switch management as a generic database
synchronization problem instead of as a specific task of forwarding
state management.

4.1 Finding Appropriate Abstractions
In a canonical SDN system [9, 14, 22], a logically centralized con-
troller (or a cluster of controllers) runs a control plane and provides
switches with forwarding state to use in packet forwarding. The
switches then apply these instructions, with little change, to their
data planes. This is in stark contrast to the traditional approach of
switch design in which control and data plane intercommunication
is not exposed outside a chassis but local control planes drive the
data planes, and control plane instances form a distributed control
plane.

In our integration of hardware NVEs to NSX, we leveraged the
concept of logical centralization but chose not to compute forward-
ing state directly in the central controller. Instead, we elevated the
level of abstraction of the switch–controller communication inter-
face: a controller provides a switch with control plane configuration
and expects each switch to locally compute the detailed forwarding
state for that switch’s data plane. Figure 1 contrasts these differences
between traditional, SDN, and NVE approaches.

Our motivation for this higher level of abstraction was twofold:
first, many hardware platforms that would otherwise make for suit-
able NVEs lack OpenFlow forwarding semantics. A useful analogy
is that OpenFlow is like assembly language, and limits the system
to only devices that have the OpenFlow “instruction set”; by mov-
ing to a higher level of abstraction, we gain the benefits of high
level languages which can execute on many different instruction set
architectures.

Second, our prior experience led us to consider a higher level
of abstraction. In earlier projects, we had uncovered a number of
problems with the canonical SDN approach using OpenFlow. Those
earlier projects were less ambitious than our multi-vendor NVE
effort; each focused on a single hardware switch vendor. However,
even then the specifics of the switching chipsets created a major
challenge: while the syntax (OpenFlow) is universal and standard-
ized across types of switches, the forwarding model semantics are
not universal across OpenFlow capable hardware switches.

We had observed that each chipset had a specific, fixed arrange-
ment of flow tables, each with extremely limited matching function-
ality and mechanisms for conveying metadata across stages. The
flow tables are often implemented by leveraging the ACL tables of
the switch ASICs. These ACL tables are often backed by TCAMs
and typically have just a few thousand rules shared among dozens of
ports, severely limiting the number of flows that can be pushed by
the controller. This is orders of magnitude less than Open vSwitch
and insufficient for many deployments. At the same time, the ASICs

have many other useful forwarding functions, but because they are
not general enough to meet the OpenFlow match requirements, those
features are unavailable to a controller that insists on speaking to the
switch using OpenFlow. In effect, the switch ASIC has limited re-
sources for “assembly language” programming, and lots of resources
to directly implement higher level abstract operations (e.g., L2 or IP
forwarding). If we insist on controlling it with OpenFlow, we lose
access to those resources capable of these higher level operations.
Ultimately we developed chipset-specific, non-standard OpenFlow
extensions so that the controller could access more features from
the ASICs.

It is easy to see how this situation became a burden. For each
chipset, developers had to understand both the nuances of the in-
dividual packet processing pipelines and the systemic interactions
among those pipelines. In effect, they had to compile the desired
high level behavior to match the specific capabilities of the ASIC
target. This was painful enough with two different hardware tar-
gets that we were reluctant to repeat it across six or more distinct
hardware architectures.

Thus, the data model that we developed was independent of the
specific hardware details. We allow a controller to specify what a
virtual network should consist of (which physical ports are logically
connected to which virtual ports, etc.) rather than how the switch
should forward packets to implement that network. The task of
computing the latter from the former is left to each switch vendor.

Of course, it’s easier said than done to come up with a data
model that is so generic that any switch architecture can implement
the mapping from “what” to “how”. We collaborated with several
switch vendors (including some who used multiple different ASIC
architectures) to verify that the data model was sufficiently general.

It is worth mentioning that our preference towards abstracting
the switch–controller communication was not greatly influenced by
scaling concerns. While moving away from centrally computing and
disseminating the low-level flow entries should reduce the controller
load, it was really the concerns of establishing interoperability across
types of switches and teams that forced us to raise the level of
abstraction.

We return to the configuration data model below in §5. We now
turn to the second step in tackling the design problem: deciding how
to exchange this more abstract configuration information among the
switches and controllers.

4.2 Generic State Synchronization
Network control plane protocols are domain-specific state synchro-
nization protocols: whether it is a routing protocol or OpenFlow, the
protocols exchange state updates between endpoints to effectively
replicate the state across systems. They are domain-specific in the
sense that they define the exact content and its semantics. That is,
while the protocols typically leave the door open for adding new
types of attributes to be synchronized, the extensions are typically to
augment the information model and semantics, not to replace them.

For this reason, our desire to be able to freely evolve the data
model argued against using existing network control plane protocols.
To understand why we considered the control protocols non-ideal
and database protocols as a better starting point, we can separate
a typical control plane endpoint implementation into three parts as
follows:

• At the lowest level, a wire protocol serializes and transmits
content messages across the wire.

• Internally, an endpoint implements a data model and expresses
all synchronized content with it.

ACM SIGCOMM Computer Communication Review Volume 47 Issue 1, January 2017

19



IPC IPC
Data Plane

Control Plane

Data Plane

Centralized Controller

Data Plane

Control Plane

Centralized Controller

OpenFlow

OVSDB

Distributed
Protocols

Chassis Boundary

Traditional Switch Canonical SDN NSX & Hardware NVE

Figure 1: A comparison of traditional switch design (left), canonical SDN design (center) and NVE design (right).

• Finally, the endpoint implements logic consuming and acting
on the data synchronized.

Consider OpenFlow, which conflates all three concerns into a
single mechanism. First, to change the data model, it is likely one
has to change the wire protocol. While the use of an Interface
Definition Language (IDL), as once proposed for OpenFlow, could
ease this task, the conflation is more fundamental. In particular,
OpenFlow couples its consistency model to its data model: for
example, the protocol specification codifies the exact functional
behavior of switches in case of a flow referring to a non-existing
port. On the other hand, while extremely specific for parts of the data
model, the semantics are frustratingly underspecified in other parts:
for instance, the exact resulting behavior in write conflicts (due to
multiple controllers writing) may be hard to derive without knowing
the specifics of the underlying switch implementation. This was a
particular concern given the clustered nature of the NSX controller.

Similar conflation has always existed in traditional network con-
trol protocols, such as routing protocols, SNMP [10] and NET-
CONF [7]. However, unlike OpenFlow, these protocols have had a
particularly simple logic (e.g., route computation process or clients
accessing individual SNMP counters), so reasoning about the overall
protocol behavior in terms of consistency has posed little or no chal-
lenges. Indeed, this approach has served the vendors relatively well,
although recent routing protocol features (e.g., nonstop forward-
ing capabilities for routing protocols [19, 29]) have questioned the
particular eventual consistency model of routing protocols. While
NETCONF, the proposed replacement of SNMP, explicitly decou-
ples the data model from its wire protocol operations, it still does
not explicitly consider consistency.

To summarize the above, existing network control protocols have
either complicated further evolving their data models through cou-
pling their data to the consistency model, or they have chosen a
particular weak consistency model with less limitations for evolving
the data but which limits the practical complexity of the logic operat-
ing over such data. This is the exact opposite of database replication
protocols, which do not embed a data model into their low-level wire
protocol, are semantic-free regarding the logic built to use the data,
and do not couple the consistency model and integrity properties
to the data synchronized. This freedom to evolve the data model
independently from the wire protocol and consistency semantics
persuaded us not to use any existing control protocol, but instead
consider the switch–controller synchronization as a generic database
synchronization problem.

4.3 Architectural Limitations
Considering switch management as a database synchronization prob-
lem elevates the focus from the low-level protocol interoperability
details to the control plane semantics but many fundamental chal-
lenges of designing for interoperability remain and, in fact, are
orthogonal to this change.

In particular, as with traditional protocols, operational require-
ments necessitate support for multiple, co-existing control plane
software versions to allow for gradual, rolling upgrades. While the
versioning complications of low-level protocol details are abstracted
away through use of a general database protocol, the overall strat-
egy for schema versioning is no different from (nor more complex
than) traditional protocol versioning: the implementations have to
gradually phase changes in (and out), always considering semantics
across a supported version matrix.

Moreover, it is still for the system designers to determine the exact
level of the abstraction for the information exchanged, and thus,
determine the preferred trade-offs between controller and switch
complexity, as well as between generality and specificity of switch
functionality. We now turn to this problem of information modeling.

5 Database Implementation
In this section we discuss the database implementation and database
protocol used in NVE. We then describe the database schema that
was developed for the initial NVE functionality.

5.1 Overview
State synchronization between NVE and the controller cluster sets
no particularly special requirements for the database technology. In-
deed, our decision to use the Open vSwitch configuration database
management protocol (OVSDB) [25] was largely a non-technical
decision: teams involved had prior experience with it, and the lib-
eral open source license of its primary implementation (packaged
as a part of Open vSwitch) allowed easy access across company
boundaries.

The OVSDB protocol is a typical database access protocol: it
connects database clients to a database server over a network. In
NSX, each NVE hardware switch runs an independent OVSDB
database server, and controllers in the controller cluster connect as
clients to each server. NSX uses the protocol to implement table
replication. For each column in a database table, either the switch
or controller is a designated master (sole owner for its content), and
the opposite peer holds a replica synchronized over the protocol.

Note that the OVSDB server resides on the NVE and the controller
is a client of that server. This means that each server is responsible
for quite a small amount of data: only the data relevant to a given
NVE is stored on that device. This simplifies the implementation
and minimizes resource requirements.

The protocol is lightweight and favors simplicity over high per-
formance in implementations. Its implementation needs no multi-
threading, query language, or query planning capabilities. These
simplifications together reduce concerns about switch control CPU
resource consumption, and yet pose no practical limitations to our
use case given the simplicity of the NVE data access and low volume
of the data held in the database. While we had some initial concerns

ACM SIGCOMM Computer Communication Review Volume 47 Issue 1, January 2017

20



that certain network events might lead to excessive transaction rates
on the database, optimizations have not proven necessary.

The network virtualization controller initiates the bidirectional
state synchronization process. For this purpose, the controllers in the
controller cluster shard managed NVE switches among themselves;
that is, for each NVE there is one master controller and a second
controller ready to take over in case of master failure.

While the controller is the database client, it is actually the NVE
switch that opens a TCP connection (optionally with TLS) to a
member of the controller cluster.3 If the controller is not the current
master, the switch is instructed (via an entry in the database) to con-
tact another controller. Once the controller receives the connection,
it issues database queries to retrieve the entire contents of all the
tables to be synchronized. After the initial snapshot retrieval, the
controller enters a delta update mode. For each column of which
the switch is the master, the controller installs a trigger to receive
updates about future changes to those columns, thus being able to
maintain its local replica. For a controller-mastered column, the
controller translates any updates applied to the local master database
to updates sent to the switch. This state synchronization process
continues in both directions until the connection is closed.

Instead of being exposed to the wire protocol format and seman-
tics, both controller and switch software developers now interface
with database tables or their replicas, synchronized for them. This
leaves the developer with the responsibility to define tables and their
columns using a wide range of data types, indices, and any referen-
tial integrity requirements, and then to either consume or populate
table contents. Unlike traditional network control protocols, the
developer is shielded from the low-level protocol details, and the
wire representation is largely irrelevant.

In addition to the explicit and generic data model definition tools,
OVSDB primitives can implement many of the consistency and isola-
tion models used in general-purpose database management systems.
So far, instead of the eventual consistency model commonly seen in
network control protocols, to simplify reasoning about consistency,
in our work with OVSDB we have adopted sequential consistency,
batching database operations (across tables) into atomically applied
transactions. Contrary to routing protocols and OpenFlow, state
consistency can be guaranteed over all updates, whether they span
multiple attribute types, rows or tables. Some of the benefits of this
consistency model became more apparent as the project progressed,
and are described in §7.

5.2 Hardware NVE Schema
Our development started with a modest goal of establishing logical
L2 connectivity between hypervisors (with virtual workloads) and
hardware NVE switches (connected to physical workloads) over
VXLAN encapsulation protocol. That is, using the terms introduced
in §3, we set the goal of realizing a logical datapath abstraction.
Using the abstraction we can provide tenants with logical switches
which in turn implement a L2 broadcast domain for interconnecting
the tenant physical and virtual workloads.

One of the guiding principles that we used in our design was to
use a consistent model of a logical port that could apply to either
true virtual ports (which are typically virtual NICs on VMs) or
ports on the NVE. We settled on the hport, VLANi pair as the best
choice for an equivalent port concept on physical NVEs. Our logical
datapath allows logical ports from either physical or virtual worlds
to be mapped to a logical L2 broadcast domain.

For this purpose, we designed a database schema for NVE. Its

3This allows a single point in the system to decide which controller
should have an active connection established with a switch.

tables and their relations are depicted in Figure 2. A complete
description of the schema is available as part of Open vSwitch [33].
The schema includes three types of information:

Physical information. All managed NVE switches have a record
in a PhysicalSwitch table. Each record holds management and
tunnel IP addresses of a particular NVE switch. The switch popu-
lates this information based on its local configuration determined
out-of-band. The PhysicalPort table provides the inventory of
ports on a physical switch. The VLANBindings column of this
table provides the means by which the NSX controller can map a
hport, VLANi pair to a logical switch. The PhysicalLocator
table contains information about overlay tunnel endpoints and en-
capsulations.

Logical information. For logical switch creation, the schema de-
fines a table LogicalSwitch. The table specifies a globally
unique on-wire tunnel key to use with the encapsulation protocols
to identify the logical switch to which a packet corresponds.4 The
controller is responsible for populating the table while the NVE
switch consumes the table to drive its configuration and slicing of
ASICs to logical switches.

Logical–physical bindings. To compute the exact forwarding en-
tries for the ASICs, NVE needs to bind the logical MAC addresses
to their reachability information which may involve tunneling de-
tails. NVE schema defines a number of MAC address tables for this
purpose.

Since the controller does not know all MAC addresses of the con-
nected physical workloads in advance but has to dynamically learn
them, the NVE populates a table UcastMacsLocal with MAC
addresses it has learned (by traditional L2 learning) from incoming
physical workload traffic. The controller replicates this table from
each NVE switch, gathers entries from all managed switches (in-
cluding hypervisors), and disseminates the resulting collection using
a table UcastMacsRemote to every NVE switch, referring in it
to tunneling reachability information held in PhysicalLocator
table. By joining these tables with the LogicalSwitch table, the
NVE switch can compute its local L2 unicast forwarding entries,
with the necessary encapsulation information, for its forwarding
ASICs.

Similarly, to implement multicast and broadcast support the NVE
switch populates a table McastMacsLocal for the controller,
which can merge content from all switches, and then disseminate the
results back to NVE switches through a table McastMacsRemote.
This table is also used by the controller to send instructions for
flooding of packets unknown MAC addresses, whether to unicast
copies of the packet to all recipients or whether to offload packet
replication to a dedicated service node.

6 Integration Experience
In this section, we describe our experiences in integrating hardware
NVEs into the NSX system. This entailed both extending NSX to
deal with the new class of devices and integrating the OVSDB into
the switch software.

6.1 Extending the Controller
The NSX controller is essentially a system for managing state. De-
sired logical network state is created by northbound APIs; physical
state is obtained from hypervisors and gateways; the controller

4In VXLAN, this key is called Virtual Network Identifier (VNI).
All network virtualization encapsulation protocols have a similar id.

ACM SIGCOMM Computer Communication Review Volume 47 Issue 1, January 2017

21



PhysicalSwitch
Name (String)

Description (String)
PhysicalPorts (Set)

Management IPs (Set of Strings)
Tunnel IPs (Set of Strings)

PhysicalPort
Name (String)

Description (String)
VLANBindings (Map of 

(VLAN ID, Logical Switch ID))

LogicalSwitch
Name (String)

Description (String)
Tunnel Key (Integer)

UcastMacLocal
MAC (String)

Logical Switch
Physical Locator

IP (String)

PhysicalLocator
Encapsulation Type (String)

Destination IP (String)

UcastMacRemote
MAC (String)

Logical Switch
Physical Locator

IP (String)

Logical Switch

Physical
Locator

Physical
Locator

Physical
Port

VLAN ID,
Logical Switch Id

Logical Switch

Figure 2: A simplified relational model of the NVE schema. Multicast MAC bindings and logical statistics are excluded for brevity.

then calculates what new state needs to be installed in the physical
devices to realize the desired logical network.

The state that NSX manages consists of two layers: the logical
and the physical. Clearly, nothing in the logical layer should be
affected by the details of how a particular physical device is realized.
The abstractions that the controller deals with remain the same, as
does the bulk of the machinery for managing the state.

That said, the controller clearly needs to be able to communicate
state changes to a physical device in terms that it can understand. A
hardware NVE needs to be told using the OVSDB protocol and the
NVE schema what its new state should be at any point in time. By
contrast, a software NVE gateway would be told using OpenFlow
what its forwarding rules should be.5

The changes we made to NSX are roughly analogous to the task
of adding a new device to a conventional operating system: the high
level operations within the OS remain consistent as you add new
devices, but ultimately a device driver needs to map system calls to
low-level I/O register changes that the device understands. Similarly,
large parts of NSX are independent of the type of physical device
being controlled, but we needed new code to map from the required
abstract state to the OVSDB commands to communicate that state.

Consider, for example, the case where a logical switch has been
created to interconnect two logical ports. One port is attached to the
virtual NIC on a VM, the other port is attached to a hport, VLANi
pair on a physical switch. Suppose the VM migrates from one
hypervisor to another. The hypervisors communicate this change
in physical location of a VM to the NSX controller. Given this
new piece of information, NSX recomputes the desired state for all
the physical devices involved in this logical switch, and determines
that the hardware NVE needs to have its forwarding table updated.
Nothing to this point is specific to the type of device. Now NSX
computes a set of OVSDB commands that it will send to the NVE
to update the UcastMacsRemote table so that the NVE will
correctly forward packets destined to the newly migrated VM.

As noted in §4 there is a further benefit of using OVSDB to com-
municate with hardware NVEs compared to the use of OpenFlow.
Because the concepts communicated in OVSDB are at a higher level
of abstraction (e.g., “connect this logical port to this logical switch”,
rather than “install the following flow rules”) there is less work for
the centralized controller. The controller deals in logical network ab-
stractions, and then compiles those down to OpenFlow rules when
programming an Open vSwitch instance. When communicating
with a hardware NVE, much of the communication is in terms of
logical network abstractions, so there is no compilation step. At the
time of writing, we have also started to implement a higher level of
abstraction for the communication path between the controller and
5Some configuration of Open vSwitch instances is performed by
OVSDB, but forwarding state is largely programmed by Open-
Flow [13]. As noted in §4, the most serious drawbacks of OpenFlow
relates to its interaction with hardware forwarding.

hypervisor virtual switches so that this benefit will be realized for
software NVEs as well.

6.2 Switch Software
The details of the database integration to switch software architec-
ture are vendor-specific but typically involve the following steps.
First, the vendor decides on the database implementation. In most
cases the OVSDB server is a port of the open source OVSDB imple-
mentation to the switch OS. Two vendors (to date) have written their
own OVSDB servers suited to their OS. The vendor then develops an
OVSDB client that runs locally on the switch (typically leveraging
libraries from the Open vSwitch distribution). That client provides
the interface between the database and the rest of the switch OS. For
example, the OVSDB client would gather the names of the ports on
the switch from the internal configuration database of the switch,
and populate that information in the OVSDB server, thus making
it available to the network virtualization controller. When the NSX
controller needs to tell the NVE how to reach some VMs, it pro-
vides their MAC addresses in the UcastMacsRemote table and
the IP addresses of the appropriate hypervisors in the Physical-
Locator table. The OVSDB client on the switch is notified of
these changes, and then passes the information to the appropriate
code to program the forwarding ASICs accordingly.

This approach led to a net reduction in complexity for the over-
all implementation. Switch vendors map OVSDB operations to
their specific hardware (much as in a conventional protocol) but no
vendor-specific behavior is exposed to the NSX controller, in sharp
contrast to our earlier efforts.

7 Platform Evolution
One of the greatest benefits of the database approach was the ability
to add new functionality to the system with no protocol modification.
Every time we needed to add some new capability, or modify an
existing capability, we were able to do so by modifying the NVE
schema. In some cases we didn’t even need to do that—we simply
defined the new parameter in the schema documentation, leaving
the schema itself unchanged. Of course, functional changes still
require new code both in the controller and the switch to expose the
new capability, but the developers can focus solely on that.

In the following sections, we describe capabilities that have been
added to the system as it has evolved after the initial data model
design laid out in §5.

Bidirectional Forwarding Detection. Bidirectional Forwarding
Detection (BFD) [12] is a general-purpose mechanism for detecting
the liveness of network links or paths. It was introduced to our
network virtualization system as a means to determine the health of
tunnels in the overlay network. This enables detection of dataplane
issues that could lead to traffic loss. For example, NSX depends
on a set of service nodes to perform replication of broadcast and

ACM SIGCOMM Computer Communication Review Volume 47 Issue 1, January 2017

22



flooded unknown traffic. To ensure that service nodes are available
and reachable, we run BFD over the tunnels between hardware
NVEs and service nodes. An NVE distributes traffic requiring
replication among the set of currently reachable service nodes, using
ECMP (equal cost multipath) hashing. If a service node becomes
unreachable according to the BFD session status, that service node
is taken out of the set of valid destinations for the multipath bundle.
BFD was added to Open vSwitch during the course of this project,
and a table to enable BFD to be configured on a per-tunnel basis
was added to the schema.

Hierarchical Switch Control. The original system design called
for the network virtualization controller to directly control each
hardware edge device. In other words, there would be a one-to-one
mapping of OVSDB server instances to hardware NVEs. However,
we encountered scenarios in which we needed to insert an inter-
mediate control point between the network virtualization controller
and one or more switches. We refer to such an intermediate control
point as a Hardware Switch Controller (HSC). A single HSC runs
the OVSDB server for one or more switches and then disseminates
database updates further to switches (over a channel that may be
proprietary).

Modifying the data model to include the HSC concept was fairly
straightforward. We included a physical switch table, in which each
line represents one physical switch under the control of the HSC.
We also added a tunnel table, so that the overlay tunnels terminating
on each hardware switch could be configured independently.

Layer 2 High Availability. Layer 2 switches often provide some
sort of link high-availability mechanism, referred to as “multi-
chassis link aggregation” (MLAG) or a similar term. MLAG pro-
vides redundant connectivity to a single host equipped with two
(or more) NICs. One NIC is cabled to one switch, the second NIC
is cabled to the second switch, and both links are monitored for
liveness. As long as both are operating correctly, traffic is spread
across the links; if a link, NIC, or switch fails, all traffic moves onto
the remaining healthy link.

We leveraged this capability to provide a highly available hard-
ware NVE for the overlay network, building on the HSC model.
Consider two switches A and B operating as an MLAG pair. We run
an OVSDB server on switch A, and let that OVSDB instance be the
HSC for both switches. We also run an OVSDB server on switch B,
and consider it the backup for the instance on switch A.

When everything is working normally, NSX communicates only
with the server on switch A. This instance provides control for both
switches. MLAG ports that straddle the two switches appear just like
normal ports in the OVSDB database. If switch B fails, the software
on switch A updates the database accordingly (e.g., showing that
switch B ports are no longer available).

In the event that switch A fails, the OVSDB server on switch B
needs to take over. Depending on the vendor’s MLAG implementa-
tion, switch B may or may not have a complete copy of the database
from switch A. When it connects to the controller, the controller
sees a connection “flap.” As a result, it will check that the database
matches the desired state that it had previously pushed to switch A,
and make updates as necessary.

This highlights the value of the database approach. From the
controller point of view, adding the support for link high-availability
required essentially no work. This is because we did not have to
hide the protocol disconnection (due to failover) from the logic
consuming the state from the database (replicas): as the database
synchronization maintains the consistency of the replicas (through
atomically applied batches of changes), the disconnection remains
invisible to higher layers. If our protocol had not provided such

strong guarantees of consistency, our implementation would have
resembled highly available BGP implementations which share TCP
state across route processor (or chassis) boundaries.

Logical Layer 3. Our initial implementation treated the hardware
NVE as an L2 device. That is, the service model that it provides
is forwarding of Ethernet frames from a physical port to a logical
switch and vice versa. We realized early on that we would also want
to provide an L3 forwarding model, in which we could create logical
routers and associate physical ports with those routers.

Our approach to adding L3 functionality was to add a Logical-
Router table that is similar to the LogicalSwitch table. Rather
than interconnecting logical ports, a logical router interconnects log-
ical switches, which in turn connect to ports. This provides fairly
rich L3 capabilities. Further details of logical L3 are omitted for
space reasons but can be found in the open source schema [33].

8 Testing and Deployment Experience
Interoperability testing between NSX and the NVE implementations
has been performed by the NSX test team, hardware partners, and
customers. In this section we describe the testing approach and
some of the results. One notable observation is that the database
approach enabled us to focus more effort on issues of scale and
performance than on functional correctness of the protocol.

8.1 Software Tools
To provide troubleshooting support for the hardware NVE exten-
sions we developed the vtep-ctl tool. (VTEP is another name
for NVE.) This tool is analogous to ovs-vsctl, which provides
the means to configure an Open vSwitch instance by interacting with
the instance’s OVSDB server. Similarly, vtep-ctl interacts with
the OVSDB server of a hardware NVE. It implements an OVSDB
client that can read and write a database conforming to the NVE
schema. For example, the command sequence:

% vtep-ctl add-ps nve100
% vtep-ctl list-ps

first creates a record for a physical switch called nve100, and then
displays all the physical switches in the database.

This tool provides a convenient and generic way to introspect
the relevant system state, without having to deal with any of the
specifics and complexity of the NSX controller. The source code
for this utility also provides a working example of an OVSDB client
implementation that switch vendors can use in developing their own
OVSDB client code.

We also developed software to emulate a hardware NVE. The
emulator was used to validate the correctness of the NSX imple-
mentation. We also made it available to hardware vendors to help
in their testing. When a problem is encountered, one can compare
the behavior of the NVE emulator to that of the hardware NVE, in-
cluding examination of the logs from the respective OVSDB servers.
This was an effective way to localize problems to the appropriate
component. Further information on this and other tools is provided
in §8.5.

8.2 Virtualized Test Environment
For several years, the developers of NSX have used a private cloud
as an environment for testing their code. This environment com-
prises a set of hypervisors, a cloud management platform based on
OpenStack [23], and a working version of NSX that builds virtual
networks interconnecting VMs and gateways. We call this instance
of NSX the “infrastructure” instance. When a developer wants to

ACM SIGCOMM Computer Communication Review Volume 47 Issue 1, January 2017

23



Hypervisors 
(Infrastructure)

NSX Controller 
(Infrastructure)

Cloud Management 
(Infrastructure)

NSX Controller
(Beta)

Hypervisor

Gateway 
(Infrastructure)

Hypervisor

HypervisorHardware NVE

NSX Private Cloud Partner Remote Site

Figure 3: A virtualized test environment.

test a new version of NSX, he can load his test images into a set
of VMs, and interconnect them into a suitable topology using the
infrastructure instance of NSX. This is nested network virtualization:
the test implementation of NSX is running inside a virtual network
provided by the infrastructure version of NSX. We typically use a
recent (pre-production) version of NSX for the infrastructure layer,
as a form of “dogfooding”—engineers depend on their own product
working to perform their jobs.

We extended this test cloud to enable hardware vendors to lever-
age the same environment. We deployed an instance of the NSX
gateway on a server located at each partner site. This enables us to
extend virtual networks from our private cloud to their test lab by
tunneling across the public Internet. Inside our private cloud, for
each partner, we run a dedicated instance of the NSX controller (a
set of VMs) with the latest code supporting hardware NVEs. These
VMs were connected to a logical network (managed by the infras-
tructure instance of NSX) and that logical network was mapped to
a VLAN on a physical port of the infrastructure gateway located
at the partner site. The partner can now see a running instance of
the NSX controller as reachable on their local network. The partner
deployed hypervisors with the appropriate version of Open vSwitch
to be controlled by NSX, and their hardware NVE. By launching
API requests to the NSX controller, or by interacting with the web-
based GUI on the VM providing that service, they were able to
place hypervisors under the control of NSX and establish OVSDB
connections from the hardware switches to the controller.

This approach made it easy for the NSX development team to
update the controller software without having access to the partner
lab. We were also able to troubleshoot issues by examining logs on
the controllers in our cloud. At the same time, partners had access
to their own hardware and could troubleshoot it locally, and update
software and firmware. This was instrumental in making rapid
progress with a large number of physically distributed partners.

8.3 Physical Test Lab
The cloud-based test environment is effective for functional tests of
interoperability between NSX and the hardware NVEs, but it is not
well provisioned for scale and performance testing. To test at large
scale and to evaluate performance, we built a physical testbed with:

• hardware NVEs under test (up to six at a time);

• approximately 20 physical servers, each a dual-socket, 8-core
Intel server with 256G main memory;

• traffic generation tools; and

• switches to interconnect hypervisors, NVEs and traffic gener-
ators, all connected with 10Gbps links.

20 servers is not a large number, but our test environment makes
use of nested virtualization to emulate a much larger deployment.
By nesting hypervisors on 16 of the servers we were able to deploy
4,096 VMs in the testbed. Each VM was configured with four virtual
NICs to increase the total number of MAC addresses in the system

to over 16,000 for scale testing purposes. A data center with over
4,000 virtual machines and 16,000 MACs is hardly megascale, but
it represents a larger-than-average enterprise deployment. Further-
more, recall that a single NVE only keeps state relevant to the virtual
networks of which it is a member, so in a real deployment it would
be exceptional if a single NVE had to track 16,000 MACs. In this
sense the test setup is representative of much larger data centers than
those of most customers.

8.4 Test Results and Discussion
We summarize here some notable observations gathered from the
NSX testing team, test teams from the hardware partners, and cus-
tomers who have tested the system.

We divide testing issues broadly into those affecting functional
correctness, and those affecting scale or performance. We encoun-
tered few functional bugs across the six hardware systems tested.
Most common among these were issues related to connecting to
multiple NSX controller nodes, and handling failure of controller
nodes. Notably, these issues are quite particular to an SDN system
that uses a scale-out controller architecture. Because the open source
OVSDB implementation has been designed explicitly to operate in
such a multi-master environment, these issues were typically easy
to address. In most cases it was as simple as starting the OVSDB
server on the NVE with the correct parameters.

The most notable failure in testing was in a customer test lab.
Whereas our test lab had the NVE building VXLAN tunnels to
hypervisors on different IP subnets, our customer’s lab had all
VXLAN tunnel endpoints (VTEPs) on the same subnet. Surpris-
ingly, the NVE was unable to correctly encapsulate packets in this
case. Within a few days the problem was localized to a shortcom-
ing of the specific forwarding ASIC. It may be too much to claim
that the database approach helped directly in the quick diagnosis,
but having an identical control plane across all hardware (unlike
our prior approach with OpenFlow) helped identify the problem
as vendor-specific. The switch vendor was then able to localize
it further to the forwarding hardware. The quick solution was to
modify the customer test topology to place the VTEPs in separate
subnets (typical in production settings).

Another set of testing issues arose because two hardware partners
developed their own OVSDB server code based on [25] rather than
using the open source server. Hence we encountered an additional
class of bugs—OVSDB protocol level issues—when testing against
these partners. These partners still achieved most of the benefits
from the database approach, such as decoupling state synchroniza-
tion from forwarding plane behavior, but were unable to benefit
from software reuse to the same extent as other partners.

BFD testing also exposed some interoperability challenges. Whereas
the Open vSwitch implementation of BFD is extremely flexible, and
can use any addresses in the BFD packet headers, we uncovered
a range of different constraints among the hardware partners. For
example, some hardware switches can only receive a BFD packet
if the destination MAC and IP address of the BFD packet match
addresses assigned to the physical switch. As we uncovered these
constraints, which were not the same for all vendors, we evolved
the schema so that a NVE could tell the controller what address
constraints needed to be satisfied.

Scale testing includes testing how long it takes the system to
stabilize after a cold start or a disruption when large amounts of
state might need to be resynchronized. For example, a NVE is reset
and needs to receive information about 16,000 VMs’ MAC addresses
from the controller, program its MAC tables accordingly, and start
forwarding traffic from the physical interfaces towards the VMs over
VXLAN tunnels. Because this time depends on both hardware (e.g.,

ACM SIGCOMM Computer Communication Review Volume 47 Issue 1, January 2017

24



time to update a hardware forwarding table) and software (the path
between the OVSDB server and the hardware-specific drivers), we
observed considerable variability in convergence times. However,
after some performance tuning we were about to bring the time
below 10 seconds for all hardware.

“Performance,” in this context, is all about the convergence of
the control plane, and only becomes an issue in large-scale failure
scenarios. Data plane performance is unaffected by the control plane
design details: after receiving OVSDB updates from a controller,
the switch local control plane proactively programs all necessary
forwarding rule updates to the data plane so it can operate at line
speed without consulting the switch control plane. Also, unlike some
SDN designs, data packets are never sent to the central controllers.

To summarize the large amount of testing, we observe that the
database approach allowed us to focus primarily on scale testing,
since functional correctness was largely assured once the OVSDB
server was implemented. For the majority of partners who re-used
the open source OVSDB server, we were saved from having to
debug OVSDB itself.

8.5 Replication of Results
The point of this paper is to illustrate the design approach that we
took, and how it evolved over time with experience in a commer-
cial setting. Hence, we’re not hoping to see quantitative results
replicated. In one sense, the fact that we were able to achieve
interoperability across so many vendors was itself an exercise in
replicable research. That said, we produced a number of software
artifacts which may be used to conduct experiments such as those
described in this paper. We describe those artifacts in the following
paragraphs.

All the open-source code used in this paper is part of the Open
vSwitch repository [20]. For the purposes of this paper we refer
to the OVS version 2.6 software branch [21]. To install the VTEP
emulator described in this paper, refer to README.ovs-vtep.md
in the vtep directory. The VTEP emulator runs exactly the same
OVSDB server code and schema as used in this paper, but does not
require a hardware switch. Instead, it uses a software switch (an
instance of OVS) that is controlled by the OVSDB server.

While many readers of this paper will not have access to the
NSX commercial software product, we have also developed an
open-source network virtualization controller, OVN (Open Virtual
Network) [24], as part of the Open vSwitch project. A full instal-
lation of Open vSwitch version 2.6 includes OVN, and a tutorial
on running OVN can be found in the file OVN-tutorial.md in
the tutorial directory. With OVN and the VTEP emulator, the
reader is able to construct in software a complete system including
a controller and NVE (i.e., VTEP). This will enable the reader to
test functional correctness, experiment with schema changes, and
perform performance testing using only commodity hardware and
open-source software.

Finally, we note that the existence of the OVN controller is another
proof point demonstrating the power of the OVSDB approach in
enabling interoperability among SDN system components. While
this paper focused on enabling many different NVE implementations
to interoperate with NSX, we now also have at least two different
network virtualization controllers that can interoperate with the
NVEs.

9 Concluding Remarks
In this paper we described our experiences in integrating hardware
NVEs to NSX using two design principles: first, elevating the inter-
operability to the level of a data model and second, using standard

database techniques to synchronize state between control plane ele-
ments. These combined with our reliance on open source allowed
us to achieve interoperability between a network virtualization con-
troller and six switch vendors in nine months.

What did we learn from this experience? Many of us had de-
signed and/or implemented protocols before, and this experience
was definitely better than the traditional approach in certain key re-
spects. We were able to achieve interoperability quickly, and across
a large number of hardware and software implementations. We
avoided some shortcomings of traditional approaches, and of prior
efforts to control hardware switches using OpenFlow. By using a
higher level of abstraction to communicate between controller and
switches, we avoided exposing developers to the low-level specifics
of the hardware, and allowed a much broader range of hardware
architectures to be supported. By using a general database approach
to synchronizing state, we greatly simplified the process of evolving
the control plane.

One might ask if we simply “cheated” by avoiding a traditional
standards process. In fact, what we did is common enough in
the history of protocol standardization. Protocol design exercises
often start within a small team, entirely outside the standardization
bodies, and are picked up later by a standards body. Our process
was certainly consensus-based, among a reasonably large group of
vendors; it simply happened outside the confines of a recognized
standards body. Indeed, we can claim that we conformed to the
IETF mantra of “rough consensus and running code.”

Significantly, our approach has since been adopted by other
projects. Not only have new hardware vendors implemented the
NVE functionality and tested it against NSX, but other SDN con-
trollers have chosen to use an OVSDB database approach to commu-
nicate with NVEs. OVN (Open Virtual Network) [24], for example,
uses OVSDB not only for communicating with hardware NVEs
but also as the control plane for software virtual switches. NSX is
also developing a more abstract interface than OpenFlow for switch
management.

With the benefit of hindsight over both this project and its less
successful predecessors, we believe that we have uncovered short-
comings with OpenFlow as a protocol for control of current gener-
ation hardware, and more generally of the conflating of concerns
that afflicts many traditional control protocols. Moreover, in using
database techniques and an effective set of high-level abstractions,
we have found a better way to achieve interoperability among the
diverse implementations of equipment from many vendors. We hope
that this work may influence the future design of network protocols.

10 Acknowledgments
Many anonymous reviewers have commented on this paper since
it was first submitted, and we thank them for helping to shape
it. We also wish to thank our colleagues across many networking
companies who contributed to developing and testing the technology
described in this paper.

11 References

[1] A. Andreyev. Introducing data center fabric, the
next-generation facebook data center network.
https://code.facebook.com/posts/
360346274145943/introducing-data-center-
fabric-the-next-generation-facebook-
data-center-network/, Nov. 2014.

[2] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,
J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,
G. Varghese, and D. Walker. P4: Programming

ACM SIGCOMM Computer Communication Review Volume 47 Issue 1, January 2017

25

https://code.facebook.com/posts/360346274145943/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://code.facebook.com/posts/360346274145943/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://code.facebook.com/posts/360346274145943/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://code.facebook.com/posts/360346274145943/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/


Protocol-independent Packet Processors. In Proc. of
SIGCOMM, 2014.

[3] X. Chen, Y. Mao, Z. M. Mao, and J. E. van der Merwe.
Declarative configuration management for complex and
dynamic networks. In Proc. CoNEXT, 2010.

[4] X. Chen, Y. Mao, Z. M. Mao, and J. E. van der Merwe.
DECOR: declarative network management and operation.
Computer Communication Review, 40(1):61–66, 2010.

[5] M. Dobrescu, K. J. Argyraki, and S. Ratnasamy. Toward
Predictable Performance in Software Packet-Processing
Platforms. In Proc. of NSDI, 2012.

[6] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall,
G. Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy.
RouteBricks: Exploiting Parallelism to Scale Software
Routers. In Proc. of SOSP, 2009.

[7] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman.
NETCONF Configuration Protocol. RFC 6241, IETF, June
2011.

[8] Google. Protocol Buffers.
https://developers.google.com/protocol-
buffers/.

[9] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker. NOX: Towards an Operating
System for Networks. SIGCOMM CCR, 38, 2008.

[10] D. Harrington, R. Preshun, and B. Wijnen. An Architecture for
Describing Simple Network Management Protocol (SNMP)
Management Frameworks. RFC 3411, IETF, Dec. 2002.

[11] Intel. Intel Data Plane Development Kit (Intel DPDK):
Programmer’s Guide, October 2013.

[12] D. Katz and D. Ward. Bidirectional Forwarding Detection
(BFD). RFC 5880, IETF, June 2010.

[13] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda,
B. Fulton, I. Ganichev, J. Gross, P. Ingram, E. Jackson,
A. Lambeth, R. Lenglet, S.-H. Li, A. Padmanabhan, J. Pettit,
B. Pfaff, R. Ramanathan, S. Shenker, A. Shieh, J. Stribling,
P. Thakkar, D. Wendlandt, A. Yip, and R. Zhang. Network
Virtualization in Multi-tenant Datacenters. In Proc. of NSDI,
Seattle, WA, Apr. 2014.

[14] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and
S. Shenker. Onix: A Distributed Control Platform for
Large-scale Production Networks. In Proc. of OSDI, Oct.
2010.

[15] M. Lasserre, F. Balus, T. Morin, N. Bitar, and Y. Rekhter.
Framework for Data Center (DC) Network Virtualization.
RFC 7365, IETF, Oct. 2014.

[16] B. T. Loo, T. Condie, M. N. Garofalakis, D. E. Gay, J. M.
Hellerstein, P. Maniatis, R. Ramakrishnan, T. Roscoe, and
I. Stoica. Declarative networking. Commun. ACM,
52(11):87–95, 2009.

[17] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan.
Declarative Routing: Extensible Routing with Declarative
Queries. In Proc. of SIGCOMM, 2005.

[18] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger,
T. Sridhar, M. Bursell, and C. Wright. Virtual eXtensible
Local Area Network (VXLAN): A Framework for Overlaying
Virtualized Layer 2 Networks over Layer 3 Networks. RFC
7348, IETF, Aug. 2014.

[19] J. Moy, P. Pillay-Esnault, and A. Lindem. Graceful OSPF
Restart. RFC 3623, IETF, November 2003.

[20] Open vSwitch – An Open Virtual Switch.
http://www.openvswitch.org, September 2016.

[21] Open vSwitch version 2.6. https://github.com/
openvswitch/ovs/tree/branch-2.6, November
2016.

[22] OpenFlow.
http://www.opennetworking.org/sdn-
resources/onf-specifications/openflow,
January 2014.

[23] OpenStack – Open Source Software for Creating Private and
Public Clouds. http://www.openstack.org,

September 2016.
[24] ovn-architecture—Open Virtual Network architecture.

http://openvswitch.org/support/dist-
docs/ovn-architecture.7.html.

[25] B. Pfaff and B. Davie. The Open vSwitch Database
Management Protocol. RFC 7047, IETF, Dec. 2013.

[26] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou,
J. Rajahalme, J. Gross, A. Wang, J. Stringer, P. Shelar,
K. Amidon, and M. Casado. The Design and Implementation
of Open vSwitch. In Proc. of NSDI, Oakland, CA, May 2015.

[27] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and
D. Walker. Abstractions for Network Update. In Proc. of
SIGCOMM, 2012.

[28] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4
(BGP-4). RFC 4271, IETF, Jan. 2006.

[29] S. Sangli, E. Chen, R. Fernando, J. Scudder, and Y. Rekhter.
Graceful Restart Mechanism for BGP. RFC 4724, IETF,
January 2007.

[30] A. Singh et al. Jupiter Rising: A Decade of Clos Topologies
and Centralized Control in Google’s Datacenter Network. In
Proc. of SIGCOMM, 2015.

[31] M. Slee, A. Agarwal, and M. Kwiatkowsk. Thrift: Scalable
Cross-Language Services Implementation.
http://thrift.apache.org/static/files/
thrift-20070401.pdf.

[32] P. Sun, R. Mahajan, J. Rexford, L. Yuan, M. Zhang, and
A. Arefin. A Network-state Management Service. In Proc. of
SIGCOMM, 2014.

[33] Hardware VTEP Database Schema.
http://openvswitch.org/support/dist-
docs/vtep.5.pdf.

ACM SIGCOMM Computer Communication Review Volume 47 Issue 1, January 2017

26

https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
http://www.openvswitch.org
https://github.com/openvswitch/ovs/tree/branch-2.6
https://github.com/openvswitch/ovs/tree/branch-2.6
http://www.opennetworking.org/sdn-resources/onf-specifications/openflow
http://www.opennetworking.org/sdn-resources/onf-specifications/openflow
http://www.openstack.org
http://openvswitch.org/support/dist-docs/ovn-architecture.7.html
http://openvswitch.org/support/dist-docs/ovn-architecture.7.html
http://thrift.apache.org/static/files/thrift-20070401.pdf
http://thrift.apache.org/static/files/thrift-20070401.pdf
http://openvswitch.org/support/dist-docs/vtep.5.pdf
http://openvswitch.org/support/dist-docs/vtep.5.pdf

	Introduction
	Background and Related Work
	Network Virtualization Overview
	System
	Hardware Virtualization Edge

	Design Approach
	Finding Appropriate Abstractions
	Generic State Synchronization
	Architectural Limitations

	Database Implementation
	Overview
	Hardware NVE Schema

	Integration Experience
	Extending the Controller
	Switch Software

	Platform Evolution
	Testing and Deployment Experience
	Software Tools
	Virtualized Test Environment
	Physical Test Lab
	Test Results and Discussion
	Replication of Results

	Concluding Remarks
	Acknowledgments
	References

