
Public Review for

On the Evolution of ndnSIM
Spyridon Mastorakis, Alexander Afanasyev, Lixia Zhang

Named Data Networking (NDN) has recently received prominence due to
its ability to send packets of interest to named communication end points
ranging from physical objects to various forms of network addresses (e.g.,
text messages or conference calls). However, there are challenges in depart-
ing from the more traditional TCP/IP architecture. Hence, this paper dis-
cusses the design and challenges as well as quantifies the advantages of an
open-source simulator for NDN experimentation (ndnSIM). Finally, the pa-
per characterizes the growth of the ndnSIM user base.

Public review written by

Joseph Camp

Southern Methodist University

ACM SIGCOMM Computer Communication Review Volume 47 Issue 4, July 2017



Artifacts Review for

On the Evolution of ndnSIM
Spyridon Mastorakis, Alexander Afanasyev and Lixia Zhang

The paper On the Evolution of ndnSIM: an Open-Source Simulator for NDN
Experimentation provides deep insights into the architecture of ndnSIM, a
network simulator intended for experiments in the field of the novel Internet
architecture Named Data Networking (NDN). Furthermore, the paper jus-
tifies design decisions, discusses experienced di�culties and introduces the
software development process of ndnSIM.
The authors emphasize the importance of ndnSIM by referring to contri-
bution statistics and current NDN research e↵orts. One goal of the paper
is to allow researchers an easy start with ndnSIM by providing a detailed
introduction and by explaining di↵erent possibilities for creating simulation
scenarios. The set of technical results in the paper compares the current
version of ndnSIM (V. 2.3) to previous ones and emphasizes the influence of
design choices on the simulator performance. Therefore, comparisons of the
memory overhead for PIT entries and CS entries, as well as execution time
comparisons of various ndnSIM components are provided and discussed.
This review aims to evaluate and rate provided artifacts. Moreover the the
replicability of the presented results is verified by following the authors in-
structions, provided in the appendix of the paper. After conducting the ar-
tifacts review, I propose to label the paper On the Evolution of ndnSIM: an
Open-Source Simulator for NDN Experimentation with the following badges:

• Artifacts Evaluated Reusable: The authors use the appendix
to provide a great range of weblinks referring to detailed information
about installing and using ndnSIM. Furthermore, they refer to example
simulations including code documentation, which can be used by other
researchers to set up their own simulations. The scripts used to gener-
ate the results of the paper are hosted in a public Github repository,
which is also referenced in the appendix. Beyond that, instructions
for installing and executing these artifacts are provided. Using these
instructions, installing the simulator and executing the scripts is easy
and does not require deep knowledge of ndnSIM.

• Results Replicated: After a few interactions with the authors, all
results presented in the paper have been replicated utilizing the pro-
vided artifacts. Due to influences by the used hardware and operating
system, as well as a di↵erent number of performed simulation runs,
marginal di↵erences compared to the presented results were obtained.
Nevertheless, these di↵erences do not a↵ect the claims of the authors.

Public review written by
Philipp Moll

Alpen Adria Universitat Klagenfurt

ACM SIGCOMM Computer Communication Review Volume 47 Issue 3, July 2017



On the Evolution of ndnSIM: an Open-Source
Simulator for NDN Experimentation

Spyridon Mastorakis

UCLA

mastorakis@cs.ucla.edu

Alexander Afanasyev

UCLA

aa@cs.ucla.edu

Lixia Zhang

UCLA

lixia@cs.ucla.edu

ABSTRACT
As a proposed Internet architecture, Named Data Network-
ing (NDN) takes a fundamental departure from today’s TCP/IP
architecture, thus requiring extensive experimentation and
evaluation. To facilitate such experimentation, we have de-
veloped ndnSIM, an open-source NDN simulator based on
the NS-3 simulation framework. Since its first release in
2012, ndnSIM has gone through five years of active devel-
opment and integration with the NDN prototype implemen-
tations, and has become a popular platform used by hun-
dreds of researchers around the world. This paper presents
an overview of the ndnSIM design, the ndnSIM development
process, the design tradeoffs, and the reasons behind the de-
sign decisions. We also share with the community a number
of lessons we have learned in the process.

CCS Concepts
•Networks ! Network simulations;

Keywords
Information-Centric Networking, Named Data Networking,
ndnSIM, Evaluation, Simulation, NS-3

1. INTRODUCTION
Named Data Networking (NDN) [55] is a proposed Inter-

net architecture. Instead of delivering packets to given IP ad-
dresses as TCP/IP does, NDN retrieves desired content items
by names. NDN names can name anything: a text message,
a data block generated from a video conference call, a com-
mand to a light bulb, or a communication endpoint. Such
a fundamental change of the communication model requires
extensive evaluation and experimentation. To create a com-
mon evaluation platform for the research community to ex-
periment with the latest advancements of NDN research at
scale, we have developed ndnSIM [10, 17, 37, 36]; an open-
source, modular NDN simulation package based on the NS-3
framework [12]. The ndnSIM development effort started in
2011 and its first beta version was released in February 2012.
Since then, it has undergone substantial design changes and
extensive development, and has been used by an increasing
number of researchers from the broader networking commu-
nity.

Over the years, ndnSIM has served as an enabler for a
wide scope of experimentation with NDN architecture. The
latest release of ndnSIM integrates the NDN Forwarding Dae-
mon (NFD) [18] and its supporting library (ndn-cxx) [39],
providing a level of interoperability between simulation and
prototyping, further increasing the value of ndnSIM exper-
imentation in understanding the behavior of NDN forward-
ing [54, 22, 41] and in-network caching [29, 51]. ndnSIM
has also facilitated the development of NDN applications [38,
27, 56, 31], the exploration of applying NDN to different
network environments (e.g., vehicular [33, 34], ad hoc wire-
less [21], mobile [45], and IoT [44, 20]), the designs of con-
gestion control [43], the evaluation of link layer [50] and
routing [48] protocols, including the NDN routing protocol
NLSR [35].

To help more people gain familiarity with ndnSIM, in this
paper we first present a broad overview of the ndnSIM de-
sign (Section 3). We then discuss the major design trade-
offs we encountered, the reasons behind our design deci-
sions, and quantitatively evaluate the cost of our decisions
(Section 4). In Section 5, we gauge the software develop-
ment effort and the community adoption of ndnSIM, and in
Section 6 we share the lessons that we have learned from
developing an open-source simulator for a new networking
architecture. Section 7 identifies several limitations in the
current version of ndnSIM, lists challenges of the develop-
ment process, and sketches our future work. Finally, Sec-
tion 8 discusses related work and Section 9 concludes the
paper.

2. BACKGROUND
In this section, we provide a brief background on Named

Data Networking and NS-3 to prepare the reader for the
ndnSIM design discussions in the rest of this paper.

2.1 Named Data Networking
The NDN project started in 2010 under the sponsorship of

the NSF Future Internet Architecture (FIA) program. Since
then, it has grown from the initial blueprint to operational
prototype implementations running over a multi-continental
testbed ns3-structure[7] and supporting a variety of applica-
tions [6].

NDN protocol stack follows the same hourglass shape as

ACM SIGCOMM Computer Communication Review Volume 47 Issue 3, July 2017



TCP/IP, but changes the “thin waist” of the network architec-
ture from address-based packet delivery to fetching named
and secured data (Figure 1). More specifically, when an ap-
plication requires a piece of data, it simply creates an Interest
packet with the name of the desired content and sends (“ex-
press”) this Interest to the network. The forwarding daemons
residing on each NDN node (Figure 2) then use these hier-
archically structured and semantically meaningful names to
forward Interest packets towards data producers (upstream
direction) using the forwarding strategy engine. The strat-
egy uses inputs from the Forwarding Information Base (FIB)
and measurements from earlier fetching to decide whether,
when, and where to forward the Interests. An NDN FIB is
similar to an IP FIB, except that it contains name prefixes
instead of IP address prefixes, and each name prefix may
points to multiple next-hop interfaces (called faces in the
NDN context), instead of a single next hop per IP destina-
tion in TCP/IP. A forwarder can also send back downstream
a Negative Acknowledgment (NACK) if it cannot forward
the Interest because of the lack of information in FIB for the
prefix, congestion on the path, or it encounters other errors.
In order to return the requested data to the requester, NDN
forwarders also maintain a state for each of the forwarded
Interests in its Pending Interest Table (PIT), recording faces
on which the Interests are received and aggregating Interests
for the same data.

Each NDN data packet includes the name, data, and a
cryptographic signature created by the original data producer
that binds together the packet’s name and the content. Be-
cause of this binding, consumers can ensure integrity, au-
thenticity, and provenance of each data regardless of how or
from where it was retrieved: from the original producer, the
managed storage, or opportunistic caches (Content Stores,
CS) that can be part of each NDN forwarder.

Applications	built	
directly	on	top	of	NDN	
data	using	names	to	

communicate

Named	secured	
data	chunk

Any	communication
media	that	can	provide

best	effort	datagram	delivery

Building	security	directly	into	the	narrow	waist

Stateful	forwarding	plane,	closed	feedback	loop,	
native	multicast,	multipath	delivery	

Best-Effort 
Datagram 
Delivery
Model

Secure Data 
Request-Response
Model

Figure 1: NDN keeps the hourglass-shaped architecture
model, but enables secure data retrieval directly at its “thin-
waist”

2.1.1 NDN Forwarder Prototype
Named Data Networking Forwarder (NFD) [18] is the ref-

erence implementation of the NDN forwarder. NFD is de-
veloped as a community effort and supports a diverse set
of experimentations with the NDN technology by empha-
sizing modularity and extensibility (Figure 3). It includes
realizations of the three basic data structure (FIB, PIT, CS)
along with several cache policies and forwarding strategies
(basic best-route and multicast strategies, self-learning ac-

Downstream Upstream

Interest
Content

Store PIT FIB
Miss

Hit
Data

Aggregate
Interest

Miss

Hit

NACK

Hit

Miss
Forward

Content
Store

PIT
DataHit

Cache
Miss

Discard
Data

Forward

NDN Forwarder

NDN Forwarder

Forwarding 
Strategy

Figure 2: Overview of packet processing by an NDN for-
warder

cess router strategy, and two adaptive SRTT-based strate-
gies). The key abstraction for communicating between the
forwarder, local applications, and remote forwarders—Face—
has modular Face-LinkService-Transport design, separating
generic high-level network-level functions (packet encod-
ing/decoding and packet dispatch), link adaptation functions
(fragmentation, optional recovery from link errors, etc.), and
low-level details of sending and retrieving packets to/from
specific links.

Many of the core NDN operations in NFD are implemented
using the ndn-cxx library [39], providing routines for packet
encoding/decoding, extensive set of security mechanisms, as
well as a special application-directed Face realizations (ndn-
cxx Face). Note that the latter are semi-equivalent of BSD
sockets providing NDN applications a basic API to express
Interests and publish data, while Face abstraction inside the
forwarder (NFD Face) is similar to OS kernel’s routines to
send/receive packets through the network interfaces.

ndn-cxxndn-cxxNFD

NDN Packet 
EncodingContent StorePIT FIB Forwarding 

Strategy

Face

LinkService

Transport

Face

Packet 
Signing

Mechanisms
Security 

Mechanisms

Figure 3: Design overview of NDN prototype implementations

2.2 NS-3 Framework
NS-3 is an open-source network simulation platform based

on discrete event scheduling. It is written in C++ and ful-
fills the needs of modern networking research. With NS-3,
users can create their own simulation topologies with custom
node and link parameters, simulate the full TCP/IP protocol
stack (physical, link, network, transport, application layer
protocols), trace and collect simulation data and visualize
the simulation execution. To reduce memory requirements
in large-scale simulations, NS-3 packets can contain virtual

ACM SIGCOMM Computer Communication Review Volume 47 Issue 3, July 2017



payload.
Network simulations in NS-3 are based on the following

key abstractions: 1) Node: the basic computing entity, which
can be programmed by users; 2) Application: a user-defined
program defining some functionality to be simulated; 3) Chan-
nel: a communication channel entity connected to a Node;
4) Net Device: representation of both the simulated hard-
ware and software drivers that enable a Node to communi-
cate through Channels with other Nodes; and 5) Topology
Helpers: software components used to facilitate the creation,
coordination and parameter configuration of the previous ab-
stractions.

The software is organized as a number of modules, each
module typically consisting of one or more models (repre-
sentations of network protocols, devices, routers, etc.) and a
number helpers classes. Figure 4 summarizes the modules,
models, net device implementations and the overall integra-
tion and support offered by NS-3.

ModelsModules Integration/
Support

Network

LTE

Antenna

Wi-Fi

Wi-Fi Mesh

Spectrum

Internet 
Ad Hoc On-

Demand Distance 
Vector (AODV)

Optimized Link 
State Routing 

(OLSR)
Low-Rate Wireless 

Personal Area 
Network (LR-

WPAN)
6LoWPAN

Propagation

Mobilty

Bridge

CSMA

PointToPoint

File Descriptor

Tap

Wimax

Net Device 
Implementations

BRITE

Click Modular
Router

OpenFlow
switch

Figure 4: Modules, models, net device implementations and
integration/support offered by NS-3

3. NDNSIM DESIGN OVERVIEW
In this section, we present the overall structure of ndnSIM

environment (Figure 5), consisting of NS3, NFD, and ndn-
cxx, as well as an NDN simulation layer, ndnSIM-specific
and real-world applications ported to ndnSIM, and a number
of plug-and-play simulation scenarios. We also identify a set
of features that makes it a useful tool to the research com-
munity and present the design workflow by discussing the
process of exchanging NDN packets between two simulated
nodes.

First, we would like to explain the term “open-source sim-
ulation package”: the term “open-source” refers to the fact
that the ndnSIM codebase is available to the public and users
are welcome to download and modify it based on their indi-
vidual needs. Users are encouraged to participate to the sim-
ulator development. The term “simulation package” demon-
strates that ndnSIM consists of multiple software compo-
nents that have been integrated altogether to provide a con-
crete framework for high-fidelity NDN simulations.

3.1 ndnSIM Structure
In its core, ndnSIM is based on NS3 simulation frame-

work and leverages it in the following ways:

• To create simulation topologies and specify topology
parameters (e.g., link bandwidth, node queue size, link
delays).

• To simulate available link-layer protocol models (e.g.,
point-to-point, wireless, CSMA).

• To simulate the exchange of NDN traffic among the
simulated nodes.

• To trace simulation events and (optionally) visualize
the simulation execution.

Therefore, ndnSIM simulations can use any of the exist-
ing modules, models, NetDevice implementations, and in-
tegrated components of NS3.

To realize the core NDN forwarding functions, ndnSIM
integrates NFD and ndn-cxx codebases, rewiring key logic
elements such as the event processing and network opera-
tions to the NS3 specific routines. The result of this inte-
gration is that the code used for experiments with NDN for-
warding in ndnSIM can be directly used by the real NFD im-
plementation and vice versa. Moreover, ndnSIM allows sim-
ulating the real-world NDN applications based on ndn-cxx
library (with a few constraints described in Section 3.2.2).

On top of the NFD integration, ndnSIM includes an ad-
dition NDN simulation layer to streamline creation and ex-
ecution of simulations and to obtain key metrics. ndnSIM
package also offers a collection of tutorial simulation sce-
narios that provide examples of ndnSIM features.

The following summarizes ndnSIM components and their
features:

• Core (Integration and Models): the NDN protocol
stack, the realization of NFD’s Transport to provide
communication on top of NS3 NetDevice and Chan-
nel abstractions, the realization of NFD’s LinkService
to facilitate direct communication between ndnSIM-
specific applications and local forwarder instances, and
the global routing controller to facilitate static config-
uration of FIB (based on the Dijkstra’s shortest path
algorithm).

• Utilities: a number of packet tracers to obtain sim-
ulation results (link-, network-, and application-level
tracing) and topology readers to simplify definition of
simulation topologies.

• Helpers: a set of helpers to install and configure NDN
stack and simulated applications on nodes, to man-
age (statically or during simulation) FIB, forwarding
strategies, and cache replacement policies, to simplify
modifying states (up/down) of the links in the simu-
lated topologies.

3.2 Applications
ndnSIM can simulate two distinct types of NDN applica-

tions: ndnSIM-specific and real-world applications.

ACM SIGCOMM Computer Communication Review Volume 47 Issue 3, July 2017



3.2.1 ndnSIM-Specific Applications
The ndnSIM-specific applications are a convenient way to

generate basic Interest/Data packet flows for various network-
level evaluations, including behavior of forwarding strate-
gies, cache policies, etc. These applications are realized
based on NS3’s Application abstraction and include several
built-in tracing capabilities, including times to retrieve data.

The built-in ndnSIM-specific applications include:

• ConsumerCbr: the consumer application that gener-
ates Interest traffic with constant-frequency pattern.

• ConsumerZipfMandelbrot: the consumer application
that generates Interests with name popularities follow-
ing the Zipf-Mandelbrot distribution [16].

• ConsumerBatches: the consumer application that gen-
erates a specified number of Interest packets at certain
points of the simulation execution. It accepts a pat-
tern for Interest generation specifying a set of points
of time in the simulation and a number of Interests to
be generated at those points.

• ConsumerWindow: the consumer application that gen-
erates Interests based on a sliding window mechanism.

• Producer: the application that responds to each re-
ceived Interest with a data packet carrying the same
name as the Interest and with a specified size.

A few examples of NDN application designs that have
been implemented and evaluated as ndnSIM-specific appli-
cations are: an application to achieve peer-to-peer file shar-
ing in NDN (nTorrent) [38] and a framework that features a
number of adaptive multimedia streaming (amus-ndnSIM) [27].

3.2.2 Real-World Applications
The real-world applications are generic applications and

libraries that fully leverage the high-level NDN and asyn-
chronous input/output APIs provided by the ndn-cxx library.
In other words, these applications can express Interests and
dispatch the retrieved Data to the supplied callbacks (as op-
posed to pre-defined callback for ndnSIM-specific applica-
tions), detect Interest timeouts, register prefixes with local
NFD, use packet signing and verification APIs. Because
ndnSIM integrates with the specially adjusted ndn-cxx li-
brary for the simulation environment, such applications can
be first developed against the real prototypes and then run
inside the simulation environment. Alternatively, the exist-
ing applications can be ported to run in ndnSIM to evaluate
them at scale.

It is important to note that the existing applications may
require several modifications to satisfy requirements imposed
by the nature of discrete event simulations. Specifically, an
application:

• should not use global variables to define its state, since
simulations may need to create multiple instances of
the same application that share the same memory;

• should not use disk operations, unless application in-
stances access unique parts of the file system, since
in the simulated environment, all application instances
access the same local file system;

• should only use ndn-cxx APIs for network-level (ndn-
cxx Face), event scheduling (ndn-cxx Scheduler), and
absolute time operations, as otherwise the simulations
may incorrectly combine simulated and real-world func-
tions;

• must not contain any GUI or command-line interac-
tions; and

• the entry point to the application should be configurable
(e.g., provided as a C++ class), allowing customized
instantiations of the application. This is a generic re-
quirement, which in most cases is satisfied if the appli-
cation/library is already provisioned for unit-testing.

So far, we and the researchers in the community have
adapted and then evaluated with ndnSIM several real-world
applications, including:

• NLSR [35, 11]: NDN Link State Routing Protocol dae-
mon.

• ChronoSync [56, 4]: one of the earliest distributed pro-
tocols for dataset synchronization in NDN.

• RoundSync [31, 15]: a revised design of the dataset
synchronization to achieve fast synchronization in face
of simultaneous data productions.

Based on our experience in assisting the community with
NDN application development, we have noticed that the ma-
jority of researchers prefer the simplified ndnSIM-specific
application prototypes. While these applications are a good
fit to drive the network-level evaluations, they have a lim-
ited approximation of NDN application semantics and re-
quire substantial effort to implement even simple applica-
tion behavior (e.g., they need custom timers to handle In-
terest timeouts, custom callback dispatch mechanism, etc.).
Therefore, we would like to encourage the community to ex-
periment with the development of real-world NDN applica-
tions that simplify realization of NDN semantics and can be
tested both inside the simulator and on the NDN testbed [7].

3.3 NDN Packet Flow in ndnSIM with In-
tegrated ndn-cxx and NFD

The packet flow in ndnSIM involves multiple elements,
including NS3’s packet, device, and channel abstraction, ndnSIM
core, and processing by the integrated NFD with the help
of ndn-cxx library. An example of the overall workflow to
forward NDN packets between two simulated nodes is illus-
trated in Figure 6.

The whole process is initiated by an application express-
ing an Interest or publishing a Data packet (after receiv-
ing an Interest for it) and includes generation of Interest
and Data packets (and appropriately signing them) using ab-
stractions provided by the integrated ndn-cxx library. Us-
ing the specialized ndnSIM Face (using AppLinkService) or

ACM SIGCOMM Computer Communication Review Volume 47 Issue 3, July 2017



ndnSIM Utilities

NS-3

NFD ndn-cxx

NDN Packet 
Encoding

Content 
StorePIT FIB Forwarding 

Strategy

Face

LinkService

ndnSIM Core
NDN Protocol 

Stack

Application 
LinkService

Network 
Device 

Transport

ndnSIM-Specific
Applications

Transport

ndnSIM-specific 
ndn-cxx Face

Packet 
Signing

Mechanisms
Security 

Mechanisms

Real-World
Applications

ndnSIM Helpers

Global 
Router

Plug-N-Play Simulation Scenarios
N

D
N

 
Si

m
ul

at
io

n 
La

ye
r

N
D

N
 

Pr
ot

ot
yp

es

Figure 5: Structure of the ndnSIM simulation package

a customized version of the ndn-cxx Face (using Internal-
ClientTransport and InternalForwarderTransport underlying
abstractions), these packets are injected into the NFD in-
stance installed on the corresponding simulated node. Af-
ter that, NFD will apply the necessary processing logic and
will determine how to process the packet, i.e., it will create
a PIT entry and forward to an outgoing Face determined by
the strategy for the Interest’s namespace, aggregate or drop
Interest, satisfy Interest from the internal cache, cache the re-
ceived Data packet and forward it to the incoming Faces, or
drop the Data packet. If a packet is determined to be send out
to a Face that corresponds to a simulated link, this packet is
getting encoded into NS3’s Packet and scheduled for trans-
mission over NS3’s NetDevice/Channel using a Face that
leverages the specialized NetDeviceTransport abstraction. On
the other end, NDN packet is extracted form the NS3 Packet
and injected into the NFD instance for further processing.

ndnSIM
Node 1

ndnSIM-specific
Applicaton

Real-world
Applicaton

NDN Protocol
Stack

ndn-cxx

NDN Protocol
Stack

NFD NFDndn-cxx

NDN
Packet(s)

NS-3
Channel

NS-3
NetDevice

NS-3
NetDevice

Application
LinkService

NetDevice
Transport

NetDevice
Transport

ndnSIM-specific
ndn-cxx Face

NS-3
Packet(s)

ndnSIM
Node 2

Figure 6: NDN packet exchange process between two simu-
lated nodes

4. PROTOTYPE INTEGRATION PROCESS
In 2014, the NDN team started development of the new

reference implementation of NDN forwarder and supporting
library to enable multiple new NDN features (per-namespace
strategies, formalized forwarding pipelines, data-centric se-
curity abstractions with trust schemas, forwarding hints, etc.)

and allowing extensions through the modularity. To ensure
that these advancements can be properly and with high-fidelity
evaluated in the simulation environment we made a decision
for ndnSIM 2.x to integrate these codebases inside ndnSIM,
instead of reimplementing the same features specifically for
NS3 (as was the case for ndnSIM 1.x). In the rest of this
section, we discuss the challenges and trade-offs of this inte-
gration and then present our experimental evaluation of the
integration overheads.

4.1 Integration Challenges
To fit the real prototypes into the NS3 world, we had to:

1) redirect the scheduler and logger of NFD and ndn-cxx to
use the scheduler and logger of NS3 respectively, 2) bind the
events in NFD with the tracing facilities of NS3 and extend
its data structures and pipelines to add NS-3 tracing points,
and 3) enable simulation time in NFD by using an abstrac-
tion provided by ndn-cxx to convert NS-3 time to NFD sys-
tem time.

Additional challenge of instantiating real NFD instances
on simulated nodes is additional memory and processing re-
quirements for simulation scenarios. To partially mitigate
these overheads, we implemented a custom KeyChain to cre-
ate “mocked” signatures of Data and Interest packets with-
out incurring cost of cryptographic operations and enabled
facilities to opt-out of some of the NFD components if they
are not needed in specific simulations.

4.2 Integration Trade-offs
The integration of NFD and ndn-cxx into ndnSIM faced a

number of trade-offs. The major change of the packet pro-
cessing flow broke compatibility with the previous versions
of ndnSIM. Because of the tight integration with the real
NDN library that assumes properly allocated memory blocks
for NDN packets, ndnSIM 2.x can no longer take advan-
tage of the virtual payload abstraction, increasing memory
requirements for packet processing and storage. In addition,
the memory overhead takes additional increase because the
integrated prototype forwarder realized fully featured data
structures of PIT, FIB, CS, and various management struc-
tures.

At the same time, ndnSIM is now fully up-to-date with
the latest advancements of NDN architecture, allowing flex-
ible two-way experimentation and evaluation—i.e., the pro-
totyped code can be simulated in ndnSIM and simulated
code can be evaluated in real (or emulated) environments.
Moreover, the integration eliminated the overhead of main-
taining and synchronizing two independent codebases and
united the research community. As anecdotal evidence of
the latter, many questions on ndnSIM mailing list are get-
ting answered by developers and users of NFD, some result-
ing in discovery of issues and requests of new features for
the reference implementations.

4.3 Integration Overhead Evaluation
To quantify effects of the major re-design of ndnSIM 2.x

compared to ndnSIM 1.x, we evaluated several basic use-
cases of the simulator: cache replacement policies, forward-

ACM SIGCOMM Computer Communication Review Volume 47 Issue 3, July 2017



ing strategies, and applications. We used a simple topol-
ogy consisting of two connected nodes and measure the sys-
tem execution time and average memory requirements for
CS and PIT. Unless otherwise stated, each node in our eval-
uations had installed NDN protocol stack (an instance of
NFD and the specialized Faces to communicate with NDN
applications and remote simulation nodes), one node with
a ConsumerCbr application instance generating 1,000 Inter-
ests/sec, and one with a Producer instance responding to the
Interests. The experiments were performed on an Intel Core
i7 processor (2.4 GHz) with 8 GBytes of memory machine,
each experiment simulating 30 seconds of packet exchanges.
We repeated each simulation ten times and we report on the
minimum, maximum, and average values of all the runs.

4.3.1 Cache Replacement Policy Development
Overhead

ndnSIM 2.x uses the CS implementation of NFD,1 there-
fore, to create a new cache replacement policy, users need
extend NFD’s Policy class to implement new callbacks that
are invoked when a new data packet is inserted to the CS,
an existing data packet is deleted from the CS, and a data
packet is about to be returned after a lookup match.

To develop a custom cache replacement policy, the API
provided by NFD can be modified more easily than imple-
menting a new C++ template class required in ndnSIM 1.x,
especially for users not so experienced with software devel-
opment in C++. On the other hand, NFD’ cache policies
framework incurs additional overhead for virtual function
dispatch, resulting in a small processin penalty.

Table 1 highlights the memory overhead per CS and PIT
entry, and the system execution time with the Least Recently
Used (LRU) and First In First Out (FIFO) replacement poli-
cies for ndnSIM 1.x and ndnSIM 2.x. The CS has a capac-
ity of 100,000 entries, enough to hold all Data packets dur-
ing each simulation run, allowing us to measure the memory
overhead as the CS size grows. As expected from the loss of
virtual payload capability, we observe that the memory over-
head per CS entry in ndnSIM 2.x is higher than of ndnSIM
1.x. At the same time, the observed seven-fold average in-
crease is larger than what we expected and we are currently
investigating the underlying reasons for this change, includ-
ing effects of the memory allocation for C++ STL data struc-
tures, memory fragmentation, and potential memory leaks in
the prototype implementation. The system execution time
for ndnSIM 2.x is as expected longer, as it runs the real NFD
prototype code that performs more sophisticated processing
than the simplified packet forwarding logic in the original
ndnSIM 1.x.

4.3.2 Forwarding Strategy Development Over-
head

In ndnSIM 1.x, the forwarding plane used a single for-
warding strategy chosen for the whole duration of the sim-

1Version 2.x of ndnSIM includes support for the ndnSIM 1.x
version of cache policies, which will be phase out in future
releases

ulation. Among available strategies were Multicast (a.k.a.
Broadcast), BestRoute, and adaptive “Green-Yellow-Red”
variants of both.2 Among the important facilities that can
be leveraged by the strategy (not yet available in NFD and
ndnSIM 2.x) was per-face and per-FIB entry rate limits on
number of Interests. In ndnSIM 2.x, a forwarding strategy is
implemented as a part of the forwarding plane of NFD and
can be selected to activate in a specific namespace. To add
a new forwarding strategy, users need to extend the Strategy
class of NFD and implement certain callbacks that will be
invoked when an Interest is received, before an Interest is
satisfied by a data packet, and when a NACK is received.

The logic of adding a new forwarding strategy in ndnSIM
1.x and 2.x is similar, however, the APIs provided by NFD
are more specialized to make determination where/whether
to forward the Interest, while ndnSIM 1.x provided more
generic APIs for strategies to control all aspects of all type
of NDN packet forwarding. In other words, NFD clearly
separates the generic logic of Interest (duplicate suppres-
sion, aggregation, etc), Data, and Nack packet processing (so
called “pipelines” in [18]) and customizable decision (and
feedback) to forward Interests, compared to ndnSIM 1.x that
combined all of these under a single umbrella of extensible
forwarding strategy API. Table 2 shows the memory over-
head per CS and PIT entry and the system execution time in
the case of the BestRoute and Multicast forwarding strate-
gies for ndnSIM 1.x (with Green-Yellow-Red scheme) and
ndnSIM 2.x (non-adaptive variants). The results are similar
to those presented in section 4.3.1 with similar conclusions
and future ares of improvements.

4.3.3 Application Development Overhead
ndnSIM 2.x enables applications to communicate directly

with the local NFD instance, therefore it supports simula-
tions of both ndnSIM-specific and real-world applications.
In ndnSIM 1.x, an application communicates with a simu-
lated forwarding plane, therefore, it can only simulate ndnSIM-
specific applications but cannot run real-world applications.

To make a fair comparison, Table 3 presents the mem-
ory overhead per CS and PIT entry and the system execu-
tion time for ndnSIM 1.x and ndnSIM 2.x when running two
ndnSIM-specific applications: 1) the ConsumerCbr applica-
tion with a constant rate of 2000 Interests/second, and 2) the
ConsumerZipfMandelbrot application generating 1000 In-
terests/second, where the names of the generated Interests
are based on an NS3 ZipfRandomVariable instance with ↵ =
1.x and N = 100.

Because of the methodology of our experiment (we are
measuring the overall memory use that includes tge over-
head of all other auxiliary data structures), the overall over-
head of ConsumerZipfMandelbrot application experiment is
higher for both ndnSIM 1.x and 2.x that that of Consumer-
Cbr because of the smaller number of generated of Interest
and Data packets. Beyond that, the overhead for memory use

2Additional strategies are available as part of car-to-car [?],
interest flooding [?], SAF [41], and several other research
efforts.

ACM SIGCOMM Computer Communication Review Volume 47 Issue 3, July 2017



Table 1: Cache Replacement Policy Development Overhead between ndnSIM 1.x & ndnSIM 2.x
ndnSIM 1.x (min/max/avg) ndnSIM 2.x (min/max/avg)

Cache Replacement Policy LRU FIFO LRU FIFO
PIT Entry Overhead (Kilobytes) 5.22/5.33/5.29 5.20/5.31/5.24 37.82/40.21/39.23 38.04/40.05/39.12
CS Entry Overhead (Kilobytes) 0.75/0.79/0.77 0.74/0.77/0.75 5.41/6.92/6.24 5.41/7.38/6.91
System Time (s) 12.84/14.13/13.56 12.49/14.71/13.92 23.56/24.93/24.03 27.57/29.11/28.53

Table 2: Forwarding Strategy Development Overhead between ndnSIM 1.x & ndnSIM 2.x
ndnSIM 1.x (min/max/avg) ndnSIM 2.x (min/max/avg)

Forwarding Strategy Best Route Multicast Best Route Multicast
PIT Entry Overhead (Kilobytes) 5.23/5.39/5.30 5.22/5.32/5.28 37.73/40.12/39.35 38.81/40.21/39.51
CS Entry Overhead (Kilobytes) 0.74/0.77/0.76 0.73/0.77/0.75 6.34/6.45/6.40 6.38/6.41/6.39
System Time (s) 12.87/14.58/13.71 13.04/14.72/14.09 22.67/23.98/23.12 21.72/22.x9/22.01

and processing time follows the same pattern as reported in
previous sections, with higher numbers for ndnSIM 2.x than
in ndnSIM 1.x because of the additional requirements of the
fully featured NFD implementation.

5. SOFTWARE DEVELOPMENT, GOV-
ERNANCE MODEL & COMMUNITY
ADOPTION

In this section, we present statistics from our GitHub repos-
itory [8] and our mailing list [9] along with the the number
of technical report citations (according to Google Scholar) to
measure the ndnSIM software development effort and adop-
tion in terms of community growth respectively. We also
present the open-source governance model and stakeholders
of ndnSIM.

5.1 Software Development Effort
In Figure 8, we present the number of commits, lines of

code added, and deleted and total contributors per year from
our GitHub repository [8].

During the first 3 years of development (before the inte-
gration with the prototypes), we had to maintain simulation-
specific software, which required a lot of effort in terms of
coding. In 2014, NFD and ndn-cxx were initially sub-folders
of the simulator codebase (their commit history was added to
the commit history of ndnSIM, resulting in the correspond-
ing spike in Figure 8). Starting from 2015, to allow easier
integration of every new release with the simulator, we de-
cided to maintain them as separate GitHub submodules (a
number code lines were deleted), therefore, the coding ef-
fort itself became less demanding. However, the cooperative
software design effort with the rest of the NDN team signifi-
cantly increased to make sure that the features developed for
NFD and ndn-cxx are compatible with ndnSIM and NS-3.

The NDN Team follows the full cycle of software devel-
opment (issue tracking, code review, unit-testing, etc.) used
in the software development industry. The code review pro-
cess introduced for ndnSIM in 2015 to ensure that each com-
mit is comprehensive and well-designed before it is pushed
to our GitHub repository.

We should note that we receive a limited number of GitHub

pull requests and issues, therefore, these metrics are not rep-
resentative of the ndnSIM software development effort. The
majority of our users submit their questions and code related
issues on our mailing list, which has created a user com-
munity at large, where people help out with each other’s
questions (as explained in detail in Section 6). Users also
typically fork the official ndnSIM GitHub repository and do
their development on their personal repositories, while they
share code patches and extensions through the mailing list
and submit their code to our code review system to get it
merged to our official GitHub repository.

68.482

107.265

19.864

96.26 99.81

7.809
2 5 7

28
10

8

180

293

207

500

122

74
102.255

125.368

40.385

137.295

30.875 10.737

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460
480
500

2011 2012 2013 2014 2015 2016

Year

GitHub	Statistics

Code	Lines	Deleted	(K) Contributors Commits Code	Lines	Added	 (K)

Figure 7: Statistics from the ndnSIM GitHub repository

5.2 Open-Source Governance Model & Stake-
holders

ndnSIM is an open-source project, where every researcher
can commit their code after going through the code review
process (the committers do not need to be NDN Team mem-
bers). As shown in Figure 8, a number of committers exter-
nal to the NDN Team have contributed to the development
of the simulator over the years.

In Figure 9, we present the ndnSIM stakeholders, their
relationship and the facilitated development workflow. At
the bottom left, we have the users that can: 1) directly sub-

ACM SIGCOMM Computer Communication Review Volume 47 Issue 3, July 2017



Table 3: Application Development Overhead between ndnSIM 1.x & ndnSIM 2.x
ndnSIM 1.x (min/max/avg) ndnSIM 2.x (min/max/avg)

Consumer Application ConsumerCbr ConsumerZipfMandelbrot ConsumerCbr ConsumerZipfMandelbrot
PIT Entry Overhead (Kilobytes) 5.13/5.24/5.18 8.08/9.45/9.03 38.02/40.22/39.54 287.69/299.167/294.21
CS Entry Overhead (Kilobytes) 0.73/0.76/0.75 2.59/3.64/3.06 6.17/6.42/6.31 82.83/84.08/83.54
System Time (s) 25.22/29.69/27.36 3.44/3.72/3.51 45.65/48.13/46.22 2.58/2.87/2.71

2
4

4

22

7
5

0
1

3

6

3 3

0

5

10

15

20

25

2011 2012 2013 2014 2015 2016

Year

GitHub	Contributors

NDN	Team External

Figure 8: ndnSIM internal (NDN team) and external contrib-
utors

mit feature and bug reports to our Redmine issue tracking
system, 2) submit their code for review to our Gerrit code
review system, and 3) send an email to the mailing list with
development related questions, feature requests and bug re-
ports.

At the bottom right, we have the ndnSIM team, which is
a part of the overall NDN project team. The ndnSIM team
works closely with the NDN protocol architects and the NFD
team to participate to the protocol design effort and ensure
that the software changes done in NFD are compatible with
ndnSIM. The ndnSIM team with the participation and help
of the entire NDN team responds to the user emails received
on the list, reviews the already submitted and creates new is-
sues on Redmine, reviews already submitted (either by users
or members of the NDN and ndnSIM team itself), and sub-
mits new code patches (commits) to Gerrit.

Once a commit is submitted to Gerrit, it is automatically
submitted to continuous integration system powered by Jenkins-
CI, where it is compiled and tested on a number of different
operating systems including several Ubuntu and macOS dis-
tributions. Once the commit is verified by Jenkins-CI and the
code review process is complete, it is merged to our official
GitHub repository.

We should note that users can also participate in discus-
sion related to the specific Redmine issues (in Redmine and
the mailing list) and Gerrit code review process, ensuing crit-
ical bugs fixed and important features are implemented in a
timely manner.

5.3 Community Growth
The ndnSIM community has grown from a few dozens

to some hundreds of members over the last five years. At

Gerrit

Users
ndnSIM 
Team 

Mailing List

Review & create 
bug or feature

issues

Review & submit
code patches

Send emails
with development
questions, feature 

requests, bug reports, 
etc.

Respond to 
received emails

Automatic commit 
submission to continuous 

integration system

Push to official GitHub 
repository when code 

review complete

Review & create 
bug or feature

issues

Review & submit
code patches

NDN 
Team

NFD 
Team 

Protocol 
Architects 

Redmine Jenkins

Figure 9: Stakeholders, their relationship and the develop-
ment workflow facilitated by ndnSIM

the time of this writing, the ndnSIM mailing list has ap-
proximately 550 subscribers and the technical reports have
been cited 425 times in total. As it is shown in Figure 10
and Figure 11, the mailing list becomes more active every
year (steady increase in the number of threads and individ-
ual emails on the mailing list over the last couple of years),
while ndnSIM is used and cited by more researchers.

We would like to thank all the members of the commu-
nity for their help and feedback and, especially, our much-
appreciated contributors; Jiangzhe Wang, Cheng Yi, Saeid
Montazeri, Xiaoke Jiang, Saran Tarnoi, Hovaidi Ardestani
Mohammad, Michael Sweatt, Wentao Shang, Christian Kreuzberger,
Yuanzhi Gao, and Mohammad Sabet, Junxiao Shi, Susmit
Shannigrahi, John Baugh, Ashlesh Gawande, and many oth-
ers who have reported bugs, submitted patches, and helped
ndnSIM users on the mailing list.

6. LESSONS LEARNED
Developing an open-source simulation platform used by a

growing and active user community is a rewarding process
that has helped to us learn a number of lessons. In this sec-
tion, we would like to share those lessons with the research
community.

ACM SIGCOMM Computer Communication Review Volume 47 Issue 3, July 2017



37

1026

461

831

1002

14

311
227

315

403

0
100
200
300
400
500
600
700
800
900
1000
1100

2012 2013 2014 2015 2016
Year

Mailing	List	Statistics

Number	 Of	Emails Number	 Of	Email	Threads

Figure 10: Statistics from the ndnSIM mailing list

4

50

77

118

133

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140

2012 2013 2014 2015 2016

Ci
ta
tio
ns

Year

Techical	Report	Citations

Figure 11: Number of citations of ndnSIM technical reports

A well-designed simulation platform facilitates the pro-
tocol design effort. It helps researchers understand the ar-
chitectural trade-offs by enabling large scale experimenta-
tion; some design deficiencies come up only after intensive
experimentation. A recent example is ChronoSync [3], where
a design bug that could lead to large delays in the case of
multiple simultaneous data generations was discovered and
fixed only after large scale simulations.

Researchers should be able to reproduce each other’s
experiments. Reproducibility is one of the most important
aspect of experiment-based research. Because of the con-
tinuous evolution of NDN, the reference implementation,
and ndnSIM, it is critical to capture the specific version of
ndnSIM used for simulations. To promote such recording
and ensure that simulation results can be easily reproduced,
we created a specialized template [?] to simplify manag-
ing simulation scenarios and ensuring future-proof ability to
re-run experiments. In addition to that, we are planning to
setup a database to collect all the simulation scenarios used
in scientific papers, so that our users have direct access to
each other’s experiments.

An open communication channel with the user com-
munity is crucial for an open-source project. A number of
times, users have helped each other by responding to ques-
tions on the mailing list, but also contributed to the actual
software development by implementing specific features.

We have established this channel in two ways:

• By extensively documenting ndnSIM and providing a large
set of basic simulation scenario examples on ndnSIM web-
site [10], encouraging user participation and helping get-
ting familiar with the codebase.

• By maintaining a mailing list to allow further collabora-
tion and assistance to questions that have not been ad-
dressed in the documentation. The mailing list has helped
us further improve our documentation by identifying and
addressing a number of frequently asked user questions
that fall into one of the following categories: 1) under-
standing of the simulation outcomes related to packet trac-
ing and simulation execution visualization, 2) experimen-
tation with the NDN architectural parameters, and 3) soft-
ware development questions, as users are required to have
a good understanding of C++ and C++11 for NFD and
ndn-cxx extensions.

Developing an open-source software project is an it-
erative process. The developed features may need to be
redesigned, refactored, or extended based on the feedback
from the users. For instance, right after the NFD integration,
we received a number of emails on the mailing list (implic-
itly) requesting a later introduced API to optionally disable
some of the NFD features not needed for basic scenarios.
When the support for NACKs was added to NFD, a num-
ber of users requested this feature in the simulator, which
required the following refactoring of ndnSIM internals with
adjustment of several trade-offs (limiting ability to optimize
memory overhead).

The simulator and the prototypes facilitate and influ-
ence each other’s development. When the NDN team started
working on ndn-cxx and NFD, parts of the ndnSIM code-
base were used to facilitate their development. Eventually,
when the prototypes were developed, they were integrated in
ndnSIM.

Since the beginning of this integration, we have been work-
ing closely with the NFD Team to make the forwarder more
modular and compatible with the simulator. An outcome of
this collaboration is the higher level of modularity of NFD
and ndn-cxx with additional parts that are conditionally com-
piled. Initially, we had to manually remove parts of the
NFD and ndn-cxx codebase not compatible with the simula-
tion environment , including implementations of TCP/UDP
channels, support for Unix sockets, logging, etc. The latest
version of NFD and ndn-cxx is integrated within ndnSIM
with minimal changes.

7. LIMITATIONS AND FUTURE WORK
In this section, we discuss the current simulator limita-

tions, the pain points of its development process, and our
future work plan.

7.1 Current ndnSIM Limitations
ndnSIM is currently supported on Linux and Mac OS plat-

forms, but unavailable on Windows (NS3 in general has lim-
ited support on Windows platform). It also does not support
connecting the simulation network with an NFD, ndn-cxx,
or an application instance running on an external host.

ACM SIGCOMM Computer Communication Review Volume 47 Issue 3, July 2017



As stated in section 3.2, real-world applications need to
be modified in certain ways in order to run in ndnSIM. The
memory requirements can become a limiting factor if one
runs ndnSIM on devices with limited hardware resources
(e.g., old or low-end laptops) to simulate large scale scenar-
ios with more than a few hundred nodes. The lack of full
backward compatibility of new releases may also limit the
portability of user-implemented features.

Overall, development of ndnSIM faces a number of chal-
lenges, including:

• Every release of NFD and ndn-cxx need to be manu-
ally integrated with ndnSIM by applying a set of cus-
tomization commits to NFD and ndn-cxx (although the
set has been shrinking).

• To enable the visualization of NDN simulation scenar-
ios and data structures (FIB, PIT, CS), we need to patch
and extend the provided NS-3 python bindings which
requires substantial efforts, especially when NFD/ndn-
cxx make significant changes in the supporting data
structures.

• Unit-testing of software built on top of NS-3 is not al-
ways a straightforward process. The sequence of the
events scheduled in the simulation environment may
vary for each execution, therefore we need to ensure
that existing and newly added unit tests are resistant
against such random variations.

7.2 Future Work
To make the research community aware of the lower level

details of the simulation development process, we plan to
extend our documentation and publish programming “HOW-
TOs” on the ndnSIM website. We also plan to enrich our col-
lection of plug-n-play simulation scenarios to demonstrate
new interesting use cases and network environments that can
take advantage of NDN’s communication model.

As mentioned in Section 6, we have been working closely
with the NFD Team to enable conditional compilation of
NFD components for ndnSIM. This can be extended to the
implemented NFD and ndn-cxx optimizations for ndnSIM,
so that every new release of the NDN prototypes can be
made automatically compatible with ndnSIM without requir-
ing manual integration.

To further improve ndnSIM’s scalability, we plan to in-
vestigate in detail the memory consumption of each simu-
lated forwarder instance, and come up with a concrete plan
to reduce this memory consumption. We also plan to make
the backward compatibility a high priority in future releases,
to the extend possible we will work with the ndnSIM user
community to minimize, if not eliminate, the need for users
to modify their scenarios and ndnSIM extensions used in the
previous simulations.

In the future, we would also like to incorporate ndnSIM
into the standard NS-3 codebase to promote NDN research
and encourage all NS-3 users to participate.

8. RELATED WORK

Three most common approaches to experimental evalua-
tion of network architecture designs include testbed deploy-
ment, emulation, and simulation.

8.1 Testbed Deployment
The NDN team has been running a testbed since the be-

ginning of the NDN project. The testbed currently consists
of 35 nodes spanning four continents. It runs the latest ver-
sions of NFD and is open to all interested researchers to use
for their own NDN experiments. However, one needs to co-
ordinate with the testbed operators first if one’s experiment
requires modifications to any parts of the NFD and ndn-cxx
instances on any of the testbed nodes.

The NDN project team also offers NDN experimentation
on the Open Network Lab (ONL) [14], which contains 14
programmable routers and over 100 client nodes. Compared
to the testbed, ONL offers a more tightly controlled exper-
imental environment with a rich set of measurement and
monitoring tools.

Years of research efforts have resulted in a number of
emulation-based (i.e., based on various virtualization and
containerization technologies) testbeds being developed and
deployed, such as 1) NITOS [40], a facility for cloud-based
wireless experimentation; 2) GENI [23], a federated testbed
for network experimentation; 3) Planetlab [28], a general
purpose, overlay testbed for broad-coverage network ser-
vices; 4) Motelab [52], a testbed consisting of wireless sen-
sors; and 5) ORBIT [42], a radio grid facility for wireless
protocols.

The testbed approach has the advantage of requiring no
changes to the software being tested, which simulation ap-
proaches often require porting prototype software to simula-
tion tools. However it only allows for experimentation with
the scale to the number of the testbed nodes (in some cases,
it may require manual setup of the experimentation software
on each node). For experimentation with larger networks,
researchers need to resort to simulations.

8.2 Emulation
In addition to the testbed, the NDN team also developed

an NDN emulator, called mini-NDN [5], which is based on
the Mininet emulator [47]. A number of other networking
emulator extensions have been built on top of Mininet as
well: 1) Mini-CCNx [24], an emulator for Content Centric
Networking (CCN) [19]; 2) Mininet-WiFi [32], an emula-
tor for Software Defined Wireless Networks; 3) SDDC [30],
a software defined datacenter experimental framework; and
4) Maxinet [53], a distributed emulator of software-defined
networks.

Generally speaking, an emulation framework provides more
realistic experimental conditions than a simulation frame-
work. In the case of the NDN frameworks, mini-NDN and
ndnSIM provide comparable result fidelity and result repro-
ducibility. NFD, NLSR and real-world applications can run
on mini-NDN without any changes, making an emulation
experimentation easier than using ndnSIM. However, mini-
NDN can scale up to medium-sized networks (up to a couple

ACM SIGCOMM Computer Communication Review Volume 47 Issue 3, July 2017



hundreds of nodes), therefore ndnSIM is again needed for
larger scale experimentations.

8.3 Simulation
ccnSim [26] is a chunk-level simulator for CCN networks [19]

(a realization of ICN). It is written in C++ under the Om-
net++ framework [49]. Its implementation focuses on the
analysis of in-network caching performance, without being
a fully-featured ICN simulator. CCNPL-SIM [1] is another
CCN simulator leveraging a platform-specific implementa-
tion of the CCN principles; every time the CCN architecture
changes, the simulator codebase needs to be manually up-
dated to include the new features, since it does not support
the integration of the CCN prototype software into the sim-
ulator.

The approach of integrating prototype software in NS-
3 has been taken by a few other simulators as well. OF-
Switch13 [25] is a simulation framework that enhances NS-3
with OpenFlow 1.3 support. Both OFSwitch13 and ndnSIM
utilize the standard NS-3 Channel and NetDevice abstrac-
tions to create communication channels and make use of an
external library, ofsoftswitch13 and ndn-cxx, respectively.
However, OFSwitch13 models OpenFlow hardware opera-
tions and extends the NS-3 Queue class to provide some ba-
sic QoS, while ndnSIM does not deal with any hardware op-
erations.

The NS3 DCE CCNx [13] project leverages the Direct
Code Execution (DCE) module of NS-3 to simulate the CCNx
prototype [2], which is the software implementation of the
legacy version of the CCN protocol. NS3 DCE CCNx uses
the TapBridge model provided by NS-3 to connect a real-
world host with the simulation network, while ndnSIM ex-
clusively uses the NS-3 NetDevice abstraction and does not
support the connection with an external Linux process (e.g.,
an external NFD instance). The DCE module is known to
cause a number of scaling issues, since every node in the
simulation has to run a full-sized instance of the simulated
protocol code plus a DCE software layer on top of that.

DCE-Cradle [46] is a simulation framework that extends
NS-3 to enable the simulation of native Linux protocol stacks
by reusing their original code. DCE Cradle replaces the NS-
3 Socket abstraction to enable NS-3 applications to access
the Linux network stack, which is similar to the direction
that ndnSIM takes by allowing both ndnSIM-specific and
real-world applications to access the original NDN protocol
stack, thus reusing the prototype code.

9. CONCLUSIONS
It has been a rather rewarding experience for us to busy

work on ndnSIM extensions while watching the ndnSIM com-
munity growing over the last few years. In this paper we
share the design challenges we encountered, the tradeoffs
from the design decisions, and the lessons we have learned.
We hope that these insights are informative not only to the
existing ndnSIM user community but also to the network re-
search community at large, and that this paper could serve
as an invitation to everyone to use ndnSIM as a handy tool

in exploring NDN research.

ACKNOWLEDGMENT
This work is partially supported by the National Science
Foundation under award CNS-1345318 and CNS-1629922.

10. REFERENCES
[1] CCNPL-SIM simulation framework.

http://systemx.enst.fr/ccnpl-sim.
[2] CCNx Project. http://blogs.parc.com/ccnx/.
[3] ChronoSync Redmine Issue 3928.

https://redmine.named-data.net/issues/3928.
[4] ChronoSync Simulation Repository.

https://github.com/spirosmastorakis/ChronoSync.
[5] Mini-NDN GitHub.

https://github.com/named-data/mini-ndn.
[6] NDN Applications.

https://named-data.net/codebase/applications/.
[7] NDN Testbed. http://ndndemo.arl.wustl.edu.
[8] ndnSIM GitHub Repository.

https://github.com/named-data-ndnSIM/ndnSIM.
[9] ndnSIM Mailing List.

http://www.lists.cs.ucla.edu/mailman/listinfo/ndnsim.
[10] ndnSIM Website. http://ndnsim.net.
[11] NLSR-SIM.

https://github.com/3rd-ndn-hackathon/ndnSIM-NLSR.
[12] ns-3. http://www.nsnam.org/.
[13] NS3 DCE CCNx Quick Start. http://www-

sop.inria.fr/members/Frederic.Urbani/ns3dceccnx/index.html.
[14] Open Networking Lab. http://onlab.us.
[15] RoundSync Simulation Repository.

https://github.com/spirosmastorakis/RoundSync.
[16] Zipf-Mandelbrot Law.
[17] Alexander Afanasyev, Ilya Moiseenko, and Lixia

Zhang. ndnSIM: NDN simulator for NS-3. Tech. Rep.
NDN-0005, NDN, 2012.

[18] Alexander Afanasyev, Junxiao Shi, et al. NFD
Developer’s Guide. Tech. Rep. NDN-0021, NDN,
2015.

[19] Bengt Ahlgren, Christian Dannewitz, Claudio
Imbrenda, Dirk Kutscher, and Borje Ohlman. A
survey of information-centric networking. IEEE
Communications Magazine, 50(7), 2012.

[20] Marica Amadeo, Claudia Campolo, and Antonella
Molinaro. Multi-source data retrieval in iot via named
data networking. In Proceedings of the 1st
international conference on Information-centric
networking, pages 67–76. ACM, 2014.

[21] Marica Amadeo, Claudia Campolo, and Antonella
Molinaro. Forwarding strategies in named data
wireless ad hoc networks: Design and evaluation.
Journal of Network and Computer Applications,
50:148–158, 2015.

[22] Hila Ben Abraham and Patrick Crowley. Forwarding
strategies for applications in named data networking.

ACM SIGCOMM Computer Communication Review Volume 47 Issue 3, July 2017



In Proceedings of the 2016 Symposium on
Architectures for Networking and Communications
Systems, pages 111–112. ACM, 2016.

[23] Mark Berman, Jeffrey S Chase, Lawrence Landweber,
Akihiro Nakao, Max Ott, Dipankar Raychaudhuri,
Robert Ricci, and Ivan Seskar. Geni: A federated
testbed for innovative network experiments. Computer
Networks, 61:5–23, 2014.

[24] Carlos Cabral, Christian Esteve Rothenberg, and
Maurício Ferreira Magalhães. Reproducing real ndn
experiments using mini-ccnx. In Proceedings of the
3rd ACM SIGCOMM workshop on
Information-centric networking, pages 45–46. ACM,
2013.

[25] Luciano Jerez Chaves, Islene Calciolari Garcia, and
Edmundo Roberto Mauro Madeira. Ofswitch13:
Enhancing ns-3 with openflow 1.3 support. In
Proceedings of the Workshop on ns-3, pages 33–40.
ACM, 2016.

[26] Raffaele Chiocchetti, Dario Rossi, and Giuseppe
Rossini. ccnsim: An highly scalable ccn simulator. In
Communications (ICC), 2013 IEEE International
Conference on, pages 2309–2314. IEEE, 2013.

[27] Benjamin Rainer Christian Kreuzberger, Daniel Posch
and Hermann Hellwagner. Demo: amus-ndnSIM –
adaptive multimedia streaming simulator for ndn.

[28] Brent Chun, David Culler, Timothy Roscoe, Andy
Bavier, Larry Peterson, Mike Wawrzoniak, and Mic
Bowman. Planetlab: an overlay testbed for
broad-coverage services. ACM SIGCOMM Computer
Communication Review, 33(3):3–12, 2003.

[29] Ali Dabirmoghaddam, Maziar Mirzazad Barijough,
and JJ Garcia-Luna-Aceves. Understanding optimal
caching and opportunistic caching at the edge of
information-centric networks. In Proceedings of the
1st international conference on Information-centric
networking, pages 47–56. ACM, 2014.

[30] Ala Darabseh, Mahmoud Al-Ayyoub, Yaser Jararweh,
Elhadj Benkhelifa, Mladen Vouk, and Andy Rindos.
Sddc: A software defined datacenter experimental
framework. In Future Internet of Things and Cloud
(FiCloud), 2015 3rd International Conference on,
pages 189–194. IEEE, 2015.

[31] Pedro de-las Heras-Quirós, Eva M. Castro, Wentao
Shang, Yingdi Yu, Spyridon Mastorakis, Alexander
Afanasyev, and Lixia Zhang. The design of
RoundSync protocol. Technical Report NDN-0048,
NDN, April 2017.

[32] Ramon R Fontes, Samira Afzal, Samuel HB Brito,
Mateus AS Santos, and Christian Esteve Rothenberg.
Mininet-wifi: Emulating software-defined wireless
networks. In Network and Service Management
(CNSM), 2015 11th International Conference on,
pages 384–389. IEEE, 2015.

[33] Giulio Grassi, Davide Pesavento, Giovanni Pau, Rama
Vuyyuru, Ryuji Wakikawa, and Lixia Zhang. Vanet
via named data networking. In Computer

Communications Workshops (INFOCOM WKSHPS),
2014 IEEE Conference on, pages 410–415. IEEE,
2014.

[34] Giulio Grassi, Davide Pesavento, Giovanni Pau, Lixia
Zhang, and Serge Fdida. Navigo: Interest forwarding
by geolocations in vehicular named data networking.
In World of Wireless, Mobile and Multimedia
Networks (WoWMoM), 2015 IEEE 16th International
Symposium on a, pages 1–10. IEEE, 2015.

[35] AKM Hoque, Syed Obaid Amin, Adam Alyyan,
Beichuan Zhang, Lixia Zhang, and Lan Wang. NLSR:
Named-data Link State Routing Protocol. In
Proceedings of the 3rd ACM SIGCOMM workshop on
Information-centric networking, pages 15–20. ACM,
2013.

[36] Spyridon Mastorakis, Alexander Afanasyev, Ilya
Moiseenko, and Lixia Zhang. ndnSIM 2.0: A new
version of the NDN simulator for NS-3. Tech. Rep.
NDN-0028, NDN, 2015.

[37] Spyridon Mastorakis, Alexander Afanasyev, Ilya
Moiseenko, and Lixia Zhang. ndnsim 2: An updated
ndn simulator for ns-3. Technical report, Technical
Report NDN-0028, Revision 2, NDN, 2016.

[38] Spyridon Mastorakis, Alexander Afanasyev, Yingdi
Yu, and Lixia Zhang. nTorrent: Peer-to-Peer File
Sharing in Named Data Networking. In 26th
International Conference on Computer
Communications and Networks (ICCCN), July 2017.

[39] NDN Project Team. ndn-cxx.
[40] Katerina Pechlivanidou, Kostas Katsalis, Ioannis

Igoumenos, Dimitrios Katsaros, Thanasis Korakis, and
Leandros Tassiulas. Nitos testbed: A cloud based
wireless experimentation facility. In Teletraffic
Congress (ITC), 2014 26th International, pages 1–6.
IEEE, 2014.

[41] Daniel Posch, Benjamin Rainer, and Hermann
Hellwagner. Saf: Stochastic adaptive forwarding in
named data networking. IEEE/ACM Transactions on
Networking, 2017.

[42] Dipankar Raychaudhuri, Ivan Seskar, Max Ott, Sachin
Ganu, Kishore Ramachandran, Haris Kremo, Robert
Siracusa, Hang Liu, and Manpreet Singh. Overview of
the orbit radio grid testbed for evaluation of
next-generation wireless network protocols. In
Wireless Communications and Networking
Conference, 2005 IEEE, volume 3, pages 1664–1669.
IEEE, 2005.

[43] Klaus Schneider, Cheng Yi, Beichuan Zhang, and
Lixia Zhang. A practical congestion control scheme
for named data networking. In Proceedings of the
2016 conference on 3rd ACM Conference on
Information-Centric Networking, pages 21–30. ACM,
2016.

[44] Wentao Shang, Adeola Bannis, Teng Liang, Zhehao
Wang, Yingdi Yu, Alexander Afanasyev, Jeff
Thompson, Jeff Burke, Beichuan Zhang, and Lixia
Zhang. Named data networking of things. In

ACM SIGCOMM Computer Communication Review Volume 47 Issue 3, July 2017



Internet-of-Things Design and Implementation
(IoTDI), 2016 IEEE First International Conference
on, pages 117–128. IEEE, 2016.

[45] Hassan Sinky and Bechir Hamdaoui. Cloudlet-aware
mobile content delivery in wireless urban
communication networks. In Global Communications
Conference (GLOBECOM), 2016 IEEE, pages 1–7.
IEEE, 2016.

[46] Hajime Tazaki, Frédéric Urbani, and Thierry Turletti.
Dce cradle: simulate network protocols with real
stacks for better realism. In Proceedings of the 6th
International ICST Conference on Simulation Tools
and Techniques, pages 153–158. ICST (Institute for
Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2013.

[47] Mininet Team. Mininet. http://mininet. org, 2014.
[48] Michele Tortelli, Luigi Alfredo Grieco, Gennaro

Boggia, and Kostas Pentikousisy. Cobra: Lean
intra-domain routing in ndn. In Consumer
Communications and Networking Conference
(CCNC), 2014 IEEE 11th, pages 839–844. IEEE,
2014.

[49] András Varga and Rudolf Hornig. An overview of the
omnet++ simulation environment. In Proceedings of
the 1st international conference on Simulation tools
and techniques for communications, networks and
systems & workshops, page 60. ICST (Institute for
Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2008.

[50] Satyanarayana Vusirikala, Spyridon Mastorakis,
Alexander Afanasyev, and Lixia Zhang. Hop-by-hop
best effort link layer reliability in named data
networking. NDN, Technical Report, NDN-0041,
2016.

[51] Yonggong Wang, Zhenyu Li, Gareth Tyson, Steve
Uhlig, and Gaogang Xie. Optimal cache allocation for
content-centric networking. In Network Protocols
(ICNP), 2013 21st IEEE International Conference on,
pages 1–10. IEEE, 2013.

[52] Geoffrey Werner-Allen, Patrick Swieskowski, and
Matt Welsh. Motelab: A wireless sensor network
testbed. In Proceedings of the 4th international
symposium on Information processing in sensor
networks, page 68. IEEE Press, 2005.

[53] Philip Wette, Martin Draxler, Arne Schwabe, Felix
Wallaschek, Mohammad Hassan Zahraee, and Holger
Karl. Maxinet: Distributed emulation of
software-defined networks. In Networking
Conference, 2014 IFIP, pages 1–9. IEEE, 2014.

[54] Cheng Yi, Alexander Afanasyev, Ilya Moiseenko, Lan
Wang, Beichuan Zhang, and Lixia Zhang. A case for
stateful forwarding plane. Computer Communications,
36(7):779–791, 2013.

[55] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke,
Van Jacobson, et al. Named data networking. Comp.
Comm. Review, 2014.

[56] Zhenkai Zhu and Alexander Afanasyev. Let’s

chronosync: Decentralized dataset state
synchronization in named data networking. In 21st
IEEE International Conference on Network Protocols
(ICNP 2013), 2013.

ACM SIGCOMM Computer Communication Review Volume 47 Issue 3, July 2017


