
A Scalable VPN Gateway for Multi-Tenant Cloud Services

Mina Tahmasbi Arashloo Pavel Shirshov Rohan Gandhi

Princeton University Microsoft Microsoft

Guohan Lu Lihua Yuan Jennifer Rexford

Microsoft Microsoft Princeton University

ABSTRACT
Major cloud providers o↵er networks of virtual machines
with private IP addresses as a service on the cloud. To iso-
late the address space of di↵erent customers, customers are
required to tunnel their tra�c to a Virtual Private Network
(VPN) gateway, which is typically a middlebox inside the

cloud that internally tunnels each packet to the correct des-
tination. To improve performance, an increasing number
of enterprises connect directly to the cloud provider’s net-
work at the edge, to a device that we call the provider’s edge
(PE). PE is a chokepoint for customer’s tra�c to the cloud,
and therefore a natural candidate for implementing network
functions concerning customers’ virtual networks, including
the VPN gateway, to avoid a detour to middleboxes inside
the cloud.

At the scale of today’s cloud providers, VPN gateways
need to maintain information for around a million internal
tunnels. We argue that no single commodity device can han-
dle these many tunnels while providing a high enough port
density to connect to hundreds of cloud customers at the
edge. Thus, in this paper, we propose a hybrid architecture
for the PE, consisting of a commodity switch, connected to a
commodity server which uses Data-Plane Development Kit
(DPDK) for fast packet processing. This architecture en-
ables a variety of network functions at the edge by o↵ering
the benefits of both hardware and software data planes. We
implement a scalable VPN gateway on our proposed PE and
show that it matches the scale requirements of today’s cloud
providers while processing packets close to line rate.

CCS Concepts
•Networks ! Middle boxes / network appliances;
Cloud computing;

Keywords
Virtual Private Network Gateway, Cloud Provider Edge,
Middleboxes

1. INTRODUCTION
Virtual networking is an increasingly popular

infrastructure-as-a-service (IaaS) o↵ered by major cloud
providers such as Microsoft, Amazon, and Google. It
enables customers to create networks of virtual machines
(VMs) with private IP addresses on the cloud as if they
were part of their own on-premise networks. The relatively
low infrastructure and management cost of hosting virtual
networks on the cloud has motivated an increasing number

of enterprises to move thousands of VMs to public clouds
[2, 9, 8, 4].

In such a virtual environment, multiple VMs with the
same private IP address, but owned by di↵erent customers,
can coexist. To isolate the address space of di↵erent cus-
tomers, cloud providers typically require customers to tunnel
their tra�c to a virtual private network (VPN) gateway to
reach their VMs. A VPN gateway receives tra�c from each
customer’s on-premise network over a separate external tun-
nel. It uses the external tunnel ID and destination VM’s IP
address to lookup the internal tunnel to the physical server
hosting that VM, and tunnels the packet to that server. The
server then decapsulates the packet and delivers it to the des-
tination VM1. Given that a large-scale cloud provider can
host hundreds of customers, each with thousands of VMs,
the lookup table for internal tunnels can grow as large as
a few million entries. Therefore, cloud providers typically
run VPN gateways as bump-in-the-wire middleboxes, using
either commodity servers or specialized blackboxes.

Until recently, the only way for customers to connect to
their cloud services, including the VPN gateways and there-
fore their virtual networks, was over the Internet. How-
ever, to interconnect their on-premise and on-cloud net-
works, large enterprises require Service Level Agreements
(SLAs) on the bandwidth of their connection to the cloud,
which is not practically feasible to provide over the Inter-
net. Therefore, major cloud providers have started to o↵er
direct and dedicated network connections to the cloud [5,
1, 6]. Customers can peer with the cloud provider by con-
necting their own border router, which we call Customer’s

Edge (CE), to what we call the Provider’s Edge (PE) (Fig-
ure 1). The PE is operated by the cloud provider and sits
right at the edge of the cloud. This makes it possible for
cloud providers to o↵er SLAs on bandwidth and latency of
customers’ access to their cloud resources since they have
full control over the end-to-end path.

Although direct peering with cloud providers through PEs
has emerged as a response to the need for more predictable
and higher-quality connections to the cloud, it creates an
opportunity for performance improvements inside the cloud
as well: the PE is a chokepoint for all the tra�c between the
customer and the cloud, and therefore is a natural candidate
for placing the VPN gateway functionality. By terminating
the VPN tunnels on the PE devices, tra�c does not need to
take a detour to a separate, o↵-path VPN gateway.

However, this makes the design of the PE quite challeng-
ing. PE needs high port density with high switching capac-

1The processing for the reverse direction is similar.

ACM SIGCOMM Computer Communication Review

Figure 1: Overview of dedicated connections to the
cloud at the edge

ity to connect hundreds of customers to the cloud’s internal
network with high-speed links. To act as a VPN gateway,
it should also handle tunnel lookup tables with around a

few million entries. Moreover, there are networking func-
tions other than VPN that can benefit from running at the
edge as opposed to a middlebox inside the cloud. These
include, but are not limited to, per-customer tra�c shap-
ing and policing, NATing for access to public cloud services,
and ACLs. Thus, it needs to be easy to extend the PE to
support new networking functions.

We argue that no single existing box can satisfy all the
above requirements. Many commodity switches o↵er tens of
40G ports, which can provide the required port density and
switching capacity. However, they typically have only a few
thousand tunnel lookup entries on the data plane. On the
other hand, we cannot simply reuse the same commodity
servers or special blackboxes used as VPN gateways since
they cannot satisfy the required port density and switch-
ing capacity. Specialized hardware solutions might be able
to satisfy the requirements for connectivity and VPN func-
tionality, but they are not cost-e↵ective and are harder to
modify for new features than commodity devices.

In this paper, we propose a hybrid architecture, built out
of a commodity switch, connected to a commodity server
with multiple high-speed ports. The rest of the switch ports
are used to connect to the customers as well as the routers
in the cloud’s internal network (Figure 2). This architec-
ture allows us to flexibly distribute the network functions
required at the edge between software and hardware, plac-
ing each on the platform that fits it best, and therefore,
achieve all the PE requirements. The switch provides high
port density and forwards packets at high speed between
CEs, the server, and the cloud. The VPN functionality is
distributed between the switch and the server. The switch
sends packets from customers’ on-premise network to a pro-
gram on the server, which uses Data-Plane Development Kit
(DPDK) [3] libraries to store the large internal tunnel lookup
table, encapsulate the packet accordingly, and direct it back
to the switch for forwarding to its destination. Packets from
VMs back to customers directly go through the switch since
looking up external tunnels is independent of the endpoint
servers and can be implemented on the switch’s data plane.
Moreover, having both the DPDK-enabled server and the
commodity switch as the data plane makes the PE easily
extensible. Similar to how we implemented the VPN func-
tionality on this hybrid architecture, developers can start

Figure 2: Proposed hybrid architecture for CEE

o↵ by adding and testing new features in the DPDK pro-
gram, and gradually o✏oad all or parts of it to the switch
to improve performance.

We have built a prototype of the PE using a commodity
server connected to a commodity switch with a single 40G
NIC. Using 10 cores on a single CPU on the server, we show
that our VPN gateway implemented on PE’s hybrid data
plane can process packets at 40G for packets larger than
128 bytes, and, due to NIC constraints, close to 40G for
smaller packets. These preliminary results encourage us that
with more NICs, cores, and another CPU on the server, our
hybrid data plane could process packets at ⇠ 100G.

To summarize, we make the following contributions:

• A hybrid data plane enabling scalable implementation
of network functions at the edge of a large-scale cloud
provider network by o↵ering the benefits of both hard-
ware and software data planes.

• A scalable VPN gateway, implemented on the hybrid
data plane, that can connect hundreds of enterprises
to their thousands of VMs on the cloud.

• A prototype of the hybrid data plane with a single 40G
NIC between the server and the switch, and prelimi-
nary results showing that a VPN gateway running on
it can keep up with 40G input tra�c.

2. THE PROVIDER’S EDGE
Our proposed Provider’s Edge (PE) has both a commodity

switch and a commodity server on its data plane (Figure 2).
The hardware data plane on the switch is a high-throughput

pipeline that is capable of common networking functionali-
ties, such as standard L2 and L3 forwarding, and tunneling.
However, it has limited memory and supports a limited set
of functions compared to that of a software data plane. The
software data plane on the server, on the other hand, is a C
program that is executed on multiple cores. Thus, it can im-
plement arbitrary packet processing logic, and hasmemory in

abundance compared to the switch. Using DPDK libraries
to send and receive packets at high speed, each core is capa-
ble of processing gigabits of tra�c per second. However, the
software data plane has a run-to-completion, as opposed to
pipeline, execution model. So, it cannot sustain its through-
put as the complexity of the C program increases.

Network functions have a wide range of requirements in
terms of functionality, memory, and throughput. Thus, we

ACM SIGCOMM Computer Communication Review

Figure 3: Packet processing for tra�c between endpoints in Customer 1’s Overlay 1 in Figure 4.

Figure 4: Example overlay network for customer 1’s
virtual network 1.

believe that this hybrid architecture provides a suitable plat-
form for implementing a variety of them at the edge. More
specifically, the rest of this section describes the functional
requirements of a VPN gateway at the edge and how it can
be implemented on top of PE to satisfy those requirements.
We also discuss several other network functions whose im-
plementation at the edge is facilitated by PE’s hybrid data
plane to demonstrate PE’s extensibility.

2.1 VPN Gateway’s Functional Requirements
Overlay Routing. To act as a VPN gateway, the PE

should participate in multiple overlay networks, each inter-
connecting a customer’s on-premise network to its virtual
network on the cloud. An overlay network consists of the
VMs in a customer’s virtual network, and the hosts in its
on-premise network who wish to communicate with them.
The hosts in the on-premise network are connected to the
customer’s CE router, each VM is virtually connected to the
software switch on the physical server hosting it, and the PE
connects the CE and the servers, as shown in Figure 4. To
deliver a packet from a customer’s on-premise network to
a VM in the cloud, the VPN gateway should find the IP
address of the physical server hosting the destination VM
by routing the packet on the overlay network. Note that a
customer may own multiple virtual networks on the cloud,
and therefore, participate in multiple overlay networks.

Tunneling. All the overlay networks share the underly-
ing network infrastructure of the same cloud provider. Thus,
to isolate the tra�c of overlay networks from each other, the
links between the PE and the servers and the customer’s CE

router in each overlay network should be implemented as
tunnels. We assign a unique identifier C to each customer
and a unique identifier O to each of its overlays, and use
(C,O) as the globally unique identifier of an overlay net-
work. This unique identifier can be used to compute tunnel
ids for that overlay network. The links between the PE
and the servers should be implemented as L3 tunnels (e.g.,
GRE, NVGRE, and VXLAN) on the cloud’s internal net-
work. All L3 tunnels of an overlay network have the PE as
one endpoint, a server as the other endpoint, and the same
tunnel identifier that is in one-to-one correspondence with
the overlay identifier. PE and CEs, however, are connected
at L2 using Ethernet. Thus, the link between the PE and
the customer’s CE can be implemented as an L2 “tunnel”,
e.g., using Q-in-Q tunneling or VLAN, where the Q-in-Q la-
bel or the VLAN tag is in one-to-one correspondence with
the overlay identifier.

Underlay Routing. To deliver tra�c from customers’
on-premise networks to the physical servers hosting their
VMs on the cloud, the PE should also be able to route en-
capsulated packets on the cloud’s internal network or the
underlay.

Figure 3 shows, at a high level, how overlay routing, to-
gether with tunneling and underlay routing can enable VPN
gateway functionality at the PE, in four stages labeled S1
through S4. Upon receiving a packet from a CE through
a L2 “tunnel” in the underlay network, the PE should de-
capsulate the packet to terminate the tunnel, and use the
tunnel identifier to find the corresponding overlay network
(S1). Each overlay network has a routing table, which maps
each VM IP address to the L3 tunnel that connects the PE
to the server hosting that VM and gets populated as part
of provisioning new VMs in that overlay. The PE should
look up the packet’s destination VM in the overlay routing
table and encapsulate based on the corresponding tunnel in-
formation (S2). The encapsulated packet will have the IP
address of the server as its destination and the tunnel id cor-
responding to the overlay identifier. Now, the packet should
be routed on the cloud’s internal network. By participating
in routing protocols of the cloud’s internal network, the PE
should keep a Longest-Prefix-Match (LPM) forwarding table
that maps IP prefixes to their output port in the underlay
network, and use that to send the encapsulated packet to its
destination server (S3).

Delivering packets from the cloud to customers’ on-

ACM SIGCOMM Computer Communication Review

premise networks is less involved. Upon receiving a packet
from a server through an L3 tunnel, the PE should decapsu-
late the packet to terminate the tunnel, and use the tunnel
identifier to find the corresponding overlay network. Given
that the customer’s CE is connected to the PE through Eth-
ernet, no L3 routing is needed. The PE can look up the L2
tag corresponding to the overlay identifier, tag the packet
accordingly, and send it to the CE at L2 (S4). This look-up
table is populated as part of provisioning for a new virtual
network, after it has been assigned an overlay identifier.

2.2 Implementing the VPN Gateway on PE
To implement the abstract pipeline in Figure 3 on the PE,

we can exploit PE’s hybrid architecture to place each part
of the pipeline on the data plane that fits it best: the hard-
ware data plane on the switch or the software data plane
on the server. Given the high throughput of the hardware
data plane and the run-to-completion execution model of the
software data plane, we want to place as much functionality
as possible on the switch, and use the server for network
functions that are either too complex or have memory re-
quirements that exceed the switch capacity.

Packets from customer’s on-premise network to the cloud
experience both overlay and underlay routing. Each over-
lay network can have on the order of thousands of VMs,
and its routing table needs to keep an entry for mapping
each VM to the tunnel to its host server. If the IP ad-
dresses of the VMs on the same server could be aggregated,
we could keep fewer entries in the routing table. However,
VMs are typically assigned to servers based on criteria other
than the aggregation possibility of IP addresses. Thus, the
overlay routing table typically has as many entries as the
number of its VMs, on the order of thousands. Given that
the PE can be part of hundreds of overlay networks and
that switches can only keep a total of a few thousand tunnel
mappings, overlay routing cannot be implemented entirely
on the switch. Therefore, when packets from CEs enter the
PE through the switch, they are redirected to the server,
where the C program takes care of the decapsulation, over-
lay routing, and L3 tunnel encapsulation. Underlay routing,
however, happens over a standard IP network with IP ag-
gregation and is a standard functionality of switches. Thus,
after overlay routing, the server sends the packets back to
the switch, where they get forwarded based on the LPM
forwarding table to their destination server.

The pipeline for packets from on-cloud VMs to on-premise
hosts can be implemented entirely on the switch. For each
overlay, there is only one destination for the packets com-
ing from the servers: the customer’s CE device. Thus, the
switch terminates the L3 tunnels from the servers by decap-
sulating the packet, looks up the L2 tag of the corresponding
overlay network, and tags and relays packets to their corre-
sponding CE device. Note that the L2 tag lookup table has
one entry per overlay network, and therefore can fit on the
switch.

2.3 More Network Functions
So far, we have mostly focused on how to use a hybrid of

software and hardware data planes to implement a scalable
VPN gateway at the edge of a large-scale cloud provider’s
network. However, we argue that, in general, this hybrid
design enables implementing a variety of network functions
with di↵erent requirements altogether at the edge. One just

needs to specify the high-level flow of packet processing for
a network function, similar to Figure 3, and estimate the
requirements at each stage of packet processing (e.g., size of
tables). Next, one should assign as many stages as possible
to the hardware data plane, and the rest to the software data
plane. The following paragraphs provide examples of net-
work functions who can benefit from running at the cloud’s
edge and how they can be implemented on the PE.

Tra�c Shaping and Policing. The cloud provider may
need to do shaping and policing on the aggregate tra�c of
each of its hundreds of customers, which perfectly fits within
the capabilities of a commodity switch. However, the cloud
provider may want to further allow customers to specify per-
VM tra�c shaping and policing rules for their virtual net-
works on the cloud. This can result in several million tra�c
shaping and policing rules across all customers, which can
no longer be supported by a commodity switch, and needs
to be implemented in software using approaches similar to
[19, 20].

Access Control Lists (ACLs). Cloud providers may
want to enable customers to specify access control lists
(ACLs) for tra�c between their on-premise network and vir-
tual networks on the cloud. A typical commodity switch can
only handle a few thousand access control rules, which is not
enough for the possibly hundreds of customers connecting to
the cloud’s edge. Thus, we can use the software data plane
on the server to fit all the ACLs at the edge, and use the
ACL tables on the switch to cache the most used entries
using approaches similar to [14].

Network Address Translation (NAT). Many enter-
prises use public cloud services for storage, data analytics,
etc. Tra�c from a customer’s on-premise private network to
these public services needs to be NAT’d before entering the
cloud’s network. The cloud provider can o↵er NATing as a
service to make access to public services transparent to the
customer. Similar to the previous cases, support for NAT-
ing exists in commodity switches, however, with a limit on
the number of concurrent connections they can track. Thus,
to implement NAT on the PE, we can keep track of con-
nections in software, and push NATing rules for a subset of
active connections to the switch.

In all the above examples as well as the VPN gateway, we
have manually distributed the functionality between hard-
ware and software. However, given the benefits of a hybrid
data plane for implementing network functions, an inter-
esting avenue for future work is to automate this process.
To do so, we need high-level abstractions for specifying i)
the packet processing stages of a network function (e.g., a
data-plane programming language similar to P4 [10]), ii)
the requirements of each stage (e.g., size of the tables),
and iii) capabilities of the target data planes (hardware and
DPDK-based software data plane in PE’s case). Next, we
need a compiler to use these specifications to automatically
distribute packet processing stages across the target data
planes.

Previous work in the literature has studied a similar au-
tomation problem, with high-level languages to describe the
desired packet processing stages and programmable switch-
ing chips as targets [13, 21]. They specify target capabil-
ities in terms of the capacity of their tables, the type of
memory they use, and the headers they can match. A com-
plier then uses this information to translate the high-level
packet processing programs into target configurations. One

ACM SIGCOMM Computer Communication Review

 0

 5

 10

 15

 20

 25

 30

 35

 40

64 128 160 384 512 1024 1280 1500

Th
ro

ug
hp

ut
 (M

pp
s)

Packet Size (Bytes)

VPN Gateway
Maximum Generated by IXIA at 40G

Figure 5: Maximum throughput of VPN gateway
compared to the maximum generated by IXIA at
40G in Mpps.

could extend these abstractions to express capabilities of
heterogenous data planes and design a compiler that dis-
tributes packet processing stages of network functions across
these data planes considering their specified capabilities.

3. PROTOTYPE
We have built a prototype of the PE and implemented

a VPN gateway on top of it to evaluate its scalability and
performance. The prototype uses Q-in-Q for L2 tunnels, and
VXLAN for L3 tunnels. It has a commodity switch with
32 40G interfaces and the Broadcom’s Trident II chipset,
which is capable of Q-in-Q and VXLAN tunneling. The
commodity server in the prototype has two Xeon(R) 2.3 GHz
CPUs, each with a 45MB L3 cache and 18 Cores. We only
use one CPU in our experiments. The server is connected
to the switch with a 40G Intel XL710 NIC.

We run a C program on the server that is executed on
multiple cores and uses DPDK libraries for fast packet pro-
cessing. More specifically, we dedicate a set of receive cores
to pull packets from receive queues on the NIC. Each receive
core itself has a queue, implemented using DPDK’s ring li-
brary with lock-free enqueue and dequeue, in which it places
the packets it receives from the NIC. A set of worker cores
pull packets from these queues, process them as follows, and
direct them back to the switch through the NIC.

Each worker receives Q-in-Q packets from customers des-
tined to their VMs on the cloud. Q-in-Q packets have two
802.1Q headers, each containing a 12-bit VLAN identifier.
We use the outer identifier to di↵erentiate customers (C),
and the inner one for their overlay networks (O). We con-
solidate all the overlay routing tables into one by merging
the Overlay Demux table with overlay routing tables in Fig-
ure 3. This table, implemented as a DPDK hash table, maps
the overlay identifier (C,O) and the IP address of a VM in
the overlay, to the IP address of the server hosting the VM
and the VXLAN tunnel identifier for that overlay. Thus,
after extracting C and O and removing the 802.1Q headers,
the program matches the packet against the consolidated
overlay routing table, wraps it in a VXLAN header, and
sends it back to the switch.

4. EVALUATION
Given that the throughput bottleneck is the software data

plane in DPDK and not the switch, we focus our evaluation

on the performance of the DPDK program. We use an IXIA
packet generator [7] to generate packets at 40G and mea-
sure the maximum throughput achievable for packets from
customers to the cloud that need to go through the server.
For a large-scale cloud provider, we expect the overlay rout-
ing table to have a few million entries. However, to explore
the e↵ect of CPU cache hit rate on performance, we run our
experiments with one, one million, and 16 million entries in
the overlay routing table in the DPDK program and con-
figure IXIA to generate packets uniformly at random such
that they hit all the overlay routing entires. In our proto-
type (Section 3), the CPU’s L3 cache is large enough to store
one million entires, but not 16 million.

One Entry. Figure 5 shows the throughput for di↵erent
packet sizes in terms of Mpps, compared to maximum Mpps
that IXIA generated at 40G, when the overlay routing table
has a single entry. The XL710 controller for our 40G NIC is
not designed to operate at line rate for packets smaller than
128 bytes, which explains the 20% gap between the max-
imum possible throughput with IXIA and what our VPN
gateway achieves for 64-byte packets. For packets larger
than 128 bytes, our VPN gateway can keep up with line-
rate at 40G. We used two receive cores, as well as 6 worker
cores for 64-byte packets, 4 cores for 128 and 160-byte pack-
ets, and two cores for the rest.

16 Million Entries. With 16 million entries, the overlay
routing table does not fit on the CPU’s L3 cache. Our VPN
gateway achieves the same throughput as the case with one
entry (Figure 5); however, we need 10 worker cores for packet
sizes of 64 and 128 bytes, 8 cores for 160-byte packets, 4 cores
for for 384 and 512-byte packets, and two for the rest.

One Million Entries. To verify that the performance
di↵erence in the two previous experiemnts is largely due to
the 100% hit rate on the L3 cache, we repeat the experiment
with one million entries in the overlay routing table, so that
it completely fits in the L3 cache. We achieve the same
throughput with the same number of cores as the case with
a single entry in the overlay routing table.

We also measured PE’s average latency for these packets,
which is between 16 to 20 microseconds in all three exper-
iments, and includes the time spent in both the server for
overlay routing and the switch for underlay routing. For
packets from the cloud to the customers, which only go
through the switch, the throughput is 40G for all packet
sizes and latency is between 2 to 3 microseconds.

We plan to do more extensive experiments to quantify
the trade-o↵s between the PE’s software and hardware data
plane. More specifically, we plan to explore the implica-
tions of DPDK’s run-to-completion processing model on its
performance by increasing the complexity of the DPDK pro-
gram in terms of the number of table lookups and branches.
Moreover, we are going to study, in more detail, the e↵ect of
CPU caches on the server as well as caching DPDK’s table
entries on the switch on performance. However, these pre-
liminary results encourage us that with more NICs, cores,
and another CPU on the server, and extensive caching, our
VPN gateway on PE can achieve ⇠ 100G throughput.

5. RELATED WORK
Several previous works [14, 17, 18] have explored co-

designing data planes with a slow processing path and a
fast one serving as its cache. PE’s hybrid data plane of-
fers similar benefits, but also allows developers to use each

ACM SIGCOMM Computer Communication Review

of slow path (software) and fast path (hardware) separately
for di↵erent packet processing stages of a network function.
Duet [12], a cloud-scale load balancer, uses the ECMP and
tunneling features of commodity switches for assigning flows
destined to virtual IP addresses (VIPs) to dynamic IP ad-
dress (DIPs), and tunneling them to their assigned DIP.
Similar to our PE, Duet also faces the problem of limited
number of entries for tunneling and ECMP in switches and
solves that by distributing the load balancer across multiple
switches. PE needs to run at the edge, so it cannot scale
using switches in the data center, and therefore solves the
problem by connecting a commodity server to the switch to
take advantage of its larger memory and the possibility of
doing arbitrary packet processing in a software data plane.
Duet also uses commodity servers in its design, but only as
backups in case of switch failures.

Moreover, NBA [15] and ClickNP [16] explore o✏oading
Click modules to GPUs and FPGAs, respectively. How-
ever, these platforms cannot support the required port den-
sity at the cloud’s edge. PE is similar to these works as
it explores o✏oading parts of network functions to hard-
ware, a commodity switch. Unlike these works, we have not
focused on high-level programming languages for PE’s hy-
brid data plane. Moreover, we could use NBA and ClickNP
for the commodity server in PE’s design to improve per-
formance. Additionally, OpenBox [11] proposes packet pro-
cessing graphs to describe network functions, and develops
algorithms for composing them. Its data plane consists of a
set of heterogenous elements, each capable of implementing
part of the packet processing graphs. However, the paper
assumes that the assignment of sub-graphs to data-plane el-
ements is given by the programmer, and does not explore
the trade-o↵s between di↵erent assignment strategies based
on the capabilities of the target elements.

6. CONCLUSION
To improve the performance of their access to cloud ser-

vices, enterprises increasingly connect directly to the cloud
provider’s network at the edge, to a device that we call the
Provider’s Edge (PE). All the tra�c between the enterprise
and the cloud passes through the PE. Thus, we argue that
PE is a natural candidate for implementing network func-
tions concerning customers’ cloud services, including the
VPN gateway for connecting them to their virtual networks
on the cloud. However, at the scale of today’s major cloud
providers, no single commodity device can handle around a
million tunnels required to isolate customers’ tra�c while
providing a high enough port density to connect to hun-
dreds of customers at the edge. Thus, in this paper, we
propose a hybrid architecture for the PE, consisting of a
commodity server running a DPDK program, connected to
a commodity switch. We implement a VPN gateway on top
of this architecture and demonstrate that using a few cores
on a single CPU on the server, it can meet the scale re-
quirement of today’s cloud providers while keeping up with
a 40G NIC. These preliminary results encourage us that us-
ing more NICs, cores, and another CPU on the server, our
VPN gateway can scale up to 100G throughput.

7. REFERENCES
[1] AWS Direct Connect.

https://aws.amazon.com/directconnect. Accessed: August
2017.

[2] Cloud Computing Trends: 2016 State of the Cloud Survey.
http://www.rightscale.com/blog/cloud-industry-insights/
cloud-computing-trends-2016-state-cloud-survey#
enterpriseworkloads. Accessed: August 2017.

[3] DPDK. http://dpdk.org/. Accessed: August 2017.
[4] Enterprise Adoption Driving Strong Growth of Public

Cloud Infrastructure as a Service, According to IDC. https:
//www.idc.com/getdoc.jsp?containerId=prUS41599716.
Accessed: August 2017.

[5] ExpressRoute.
https://azure.microsoft.com/en-us/services/expressroute.
Accessed: August 2017.

[6] Google Cloud Interconnect.
https://cloud.google.com/interconnect/. Accessed: August
2017.

[7] IxNetwork. https://www.ixiacom.com/products/ixnetwork.
Accessed: August 2017.

[8] Next-Generation Enterprise Branch Network
Communications in a Cloud-Connect Environment.
https://www.globalservices.bt.com/static/assets/pdf/
campaign/Network\%20like\%20never\%20before/IDC
Analyst Connections Briefing Document.pdf. Accessed:
August 2017.

[9] Roundup of Cloud Computing Forecasts and Market
Estimates, 2016.
http://www.forbes.com/sites/louiscolumbus/2016/03/13/
roundup-of-cloud-computing-forecasts-and-market-estimates-2016/
#1c86a8c774b0. Accessed: August 2017.

[10] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,
J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,
G. Varghese, and D. Walker. P4: Programming
protocol-independent packet processors. ACM SIGCOMM
CCR, 2014.

[11] A. Bremler-Barr, Y. Harchol, and D. Hay. OpenBox: a
software-defined framework for developing, deploying, and
managing network functions. In SIGCOMM, 2016.

[12] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye,
L. Yuan, and M. Zhang. Duet: Cloud scale Load Balancing
with Hardware and Software. 2015.

[13] L. Jose, L. Yan, G. Varghese, and N. McKeown. Compiling
Packet Programs to Reconfigurable Switches. In NSDI,
2015.

[14] N. Katta, O. Alipourfard, J. Rexford, and D. Walker.
Cacheflow: Dependency-aware rule-caching for
software-defined networks. In SOSR, 2016.

[15] J. Kim, K. Jang, K. Lee, S. Ma, J. Shim, and S. Moon.
NBA (network balancing act): A high-performance packet
processing framework for heterogeneous processors. In
EuroSys, 2015.

[16] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu,
Y. Xiong, and P. Cheng. ClickNP: Highly flexible and
high-performance network processing with reconfigurable
hardware. In SIGCOMM, 2016.

[17] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun,
M. Alizadeh, V. Jeyakumar, and C. Kim.
Language-Directed Hardware Design for Network
Performance Monitoring. In SIGCOMM, 2017.

[18] B. Pfa↵, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou,
J. Rajahalme, J. Gross, A. Wang, J. Stringer, P. Shelar,
et al. The Design and Implementation of Open vSwitch. In
NSDI, 2015.

[19] S. Radhakrishnan, Y. Geng, V. Jeyakumar, A. Kabbani,
G. Porter, and A. Vahdat. SENIC: Scalable NIC for
End-Host Rate Limiting. In NSDI, 2014.

[20] A. Saeed, N. Dukkipati, V. Valancius, C. Contavalli,
A. Vahdat, et al. Carousel: Scalable Tra�c Shaping at End
Hosts. In SIGCOMM, 2017.

[21] C. Schlesinger, M. Greenberg, and D. Walker. Concurrent
NetCore: From policies to pipelines. In ICFP, 2014.

ACM SIGCOMM Computer Communication Review

