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ABSTRACT
The analysis of flow traces can help to understand a net-
work’s usage patterns. We present a hierarchical clustering
algorithm for network flow data that can summarize ter-
abytes of IP traffic into a parsimonious tree model. The
method automatically finds an appropriate scale of aggrega-
tion so that each cluster represents a local maximum of the
traffic density from a block of source addresses to a block of
destination addresses. We apply this clustering method on
NetFlow data from an enterprise network, find the largest
traffic clusters, and analyze their stationarity across time.
The existence of heavy-volume clusters that persist over long
time scales can help network operators to perform usage-
based accounting, capacity provisioning and traffic engineer-
ing. Also, changes in the layout of hierarchical clusters can
facilitate the detection of anomalies and significant changes
in the network workload.

CCS Concepts
•Networks → Network performance analysis; Net-
work measurement; •Computing methodologies →
Cluster analysis;
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Flow clustering, Hierarchical clustering, NetFlow, Unsuper-
vised Machine Learning

1. INTRODUCTION
Enterprise networks and service providers are flooded with

operational data aggregated in different scales, from link
utilization counters all the way to flow records. The sheer
amount of this data, as well as their velocity and dimension-
ality, is overwhelming for network operators. New meth-
ods are needed that can aggregate and analyze such data
in real-time to produce a high-level understanding of the
network’s operating status, and to produce actionable rec-
ommendations when something appears to be out of the
ordinary. As a step towards this high-level goal, a major
task is to aggregate the incoming stream of flow records in
both the spatial and temporal domains. The scale at which
network data should be analyzed at is a crucial factor in
both diagnostic and predictive tasks; for instance, an indi-
vidual flow record cannot tell us much about what happens
in the network, while a coarse aggregation of flows based

*This paper was originally published in the proceedings of
the Big-DAMA 2017 SIGCOMM workshop

on BGP prefixes can blur out important flow patterns and
deviations. We present a flow aggregation scheme that iden-
tifies source-destination address blocks of maximum traffic
density. The proposed clustering method is capable of han-
dling flow records collected from multiple routers. The flow
records are first aggregated agglomeratively to form a tree
model that accounts for the entire traffic volume. Then, the
constructed tree is traversed in an efficient manner to iden-
tify and mark nodes that correspond to maximum traffic
density; those nodes are the identified clusters. These clus-
ters form a parsimonious hierarchical model of the network
flow that can facilitate many applications in network man-
agement, such as traffic engineering, capacity provisioning,
usage accounting, and anomaly detection.

2. RELATED WORK
Our clustering approach is similar in terms of objectives

to that of Estan et al. [4] but with important methodologi-
cal differences. That work finds clusters with traffic volume
larger than a given threshold. The threshold is set as a
percentage of the total traffic; this is equivalent to speci-
fying a desired number of clusters. Our method does not
require a given number of clusters. This fundamental dif-
ference is more important when the dataset contains traffic
from different routers and locations. The method of [4]
and similar volume-based approaches [13, 7, 12] stretch and
merge cluster boundaries just to meet the volume threshold
constraint [1].

Density-based clustering algorithms such as DBSCAN [5]
are more similar to our method. However, DBscan does not
consider the hierarchical structure of IP address blocks. We
introduce a density metric that is appropriate for the two-
dimensional space of source-destination IP addresses. Fi-
nally, to account for the inherent hierarchical nature of IP
addressing, we deploy agglomerative hierarchical clustering
[6, 11] but relying on density maximization in every hierar-
chical level.

3. METHOD
We use the term “Macroflows” as a 2-tuple aggregation

of network packets with the same IP source and destina-
tion addresses, over a given time period. Macroflows can be
represented as points in a 2D space of source and destina-
tion addresses. In this 2D space, an “IP rectangle” (IPREC )
R = (S,D) represents all macroflows with source addresses
in S and destination addresses in D, where S and D are two
continuous ranges of IP addresses in the source and destina-
tion dimensions, respectively. Each IPREC R has a volume
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VR, which is the total traffic volume within its boundaries.
The size of the IPREC R is denoted by AR and it is the
total number of IP address pairs in R. We also define the
operator merge, denoted by ⊕, as the minimum bounding
rectangle of two IPRECs.

Let the volume density1 of R be:

density(R) =
VR
AR

. (1)

We are interested in finding IPRECs with maximum local
volume density. Given the inherent hierarchical nature of IP
addressing, we rely on an agglomerative clustering approach
that first creates a MacroFlow Tree (MFT) model, and then
identifies the clusters by an efficient analysis of the MFT.

3.1 MFT construction
The root of an MFT has no parent and its IPREC cov-

ers the whole 2D IP space of the given macroflow dataset.
The leaves of the MFT correspond to individual macroflows
(IPRECs of size one). Each internal MFT node is an IPREC
with a single pointer to a parent node, and two or more
pointers to its children nodes. If ni is the parent of nj then
the ni IPREC contains the nj IPREC. The volume density
of a node is that of its IPREC; likewise, merging of nodes is
equivalent to merging their corresponding IPRECs.

To form the MFT agglomeratively, certain nodes are merged
in each iteration. To make the MFT construction more
efficient, this merging operation is performed considering
only neighboring nodes. The neighborhood of a node is de-
fined by its K nearest neighbor set (KNN SET). Finding
the KNN SET of a node requires a distance function be-
tween IPRECs; we use the Euclidean distance between the
centroids of two IPRECs.

The clustering objective is to identify IPRECs of maxi-
mum volume density. Specifically, in each iteration we iden-
tify the two nodes that generate the IPREC with the maxi-
mum volume density and merge them. So, nodes ni and nj
are merged if:

i, j = args max
p,q∈N∅

density(np ⊕ nq)

s.t. p ∈ KNN SET(q) (2)

where N∅ is the set of all intermediate and leaf nodes that
have not been merged yet. Thus, each iteration of the MFT
construction consists of finding the optimal pair of IPRECs,
according to eq. 2, and merging them to form a new parent
node. Note that the IPRECs contained in the parent node
are considered its children.

Figure 1 illustrates the iterations of the MFT construction
algorithm for an example with four nodes. Merging n1 and
n3 leads to maximum volume density in the first iteration,
creating the node n13 as the parent of nodes n1, n2, and n3.
In the last iteration, all nodes are merged to form the root
of the MFT.

To reduce the run-time complexity of the algorithm, we
avoid re-calculating the KNN SET of nodes at each itera-
tion. Instead, we build a weighted KNN graph initially; each

edge p
W−→ q in the KNN graph means that q ∈ KNN SET(p)

and the merge density of p and q is W . The edge weights of
the KNN graph are stored in a maximum heap data struc-
ture that supports constant-time queries for the maximum
1We use density and volume density interchangeably in the
remainder of the paper.
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Figure 1: Left: illustration of a 2-dim IP space with four
traffic-carrying regions (nodes). Each node is labeled with
its traffic volume. Right: the corresponding MFT (assuming
that all nodes are neighbors with each other, in terms of
KNN distance). A density calculation after merging nodes
1 and 3 is also shown.

element (i.e., the optimal merge candidate of equation 2 is
returned in O(1) time at each iteration). Also, in each itera-
tion two or more MFT nodes are deleted, and a new node is
added. The nodes with modified neighborhoods are queried
for their KNN SET. We use the KDTree datastructre to
maintain the KNN graph because it supports the insertion,
deletion and KNN SET query operations in O(logN) time
[2].

3.2 Cluster retrieval
The construction of the MFT hierarchy, introduced in the

previous section, facilitates the detection of clusters, as de-
scribed next. Consider a chain of nodes ni, ni+1, · · · , ni+k
that form a path in the MFT. The density change between
a child and its parent on this chain is

∆density(nj) =
Vnj .parent − Vnj

Anj .parent −Anj

. (3)

If two nodes nj and nj .parent are within the same cluster,
their volume densities fluctuate around the same density,
i.e., the derivative of ∆density(nj) is expected to be close
to zero. However, if the node nj resides at the boundary
of a cluster there should be a sharp density drop at nj that
will cause the derivative of the density to be significantly
less than zero. We identify the nodes that experience such
sharp density drops as clusters.

The MacroFlow Clustering (MFC) algorithm traverses the
MFT tree from the root towards the leaves, searching for
nodes at which the derivative of the density function drops
significantly below zero. The problem with this procedure
is that this derivative function can be highly noisy, because
of the highly skewed traffic distribution. To address this
issue, we rely on regularized derivates [3]. The method of
Chartrand [3] imposes some degree of regularization in the
derivative of the density function by optimizing the trade-off
between the accuracy of the derivative and its smoothness.

Let Rd(ni) be the regularized derivative of ∆density(ni).
The MFC algorithm marks the node ni as a cluster if the
drop Rd(ni) − Rd(ni+1) is δ-times larger than the maxi-
mum of these drops in the l preceding nodes, i.e., we set
the minimum length of the “plateau” in the density function
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Figure 2: Volume density and its two derivatives (ordinary
and regularized) for a sample path from a leaf of the MFT
to the root. There are two clusters in this path, at hop
numbers 4 and 13 (see large drops of density).

to l steps, and the minimum relative magnitude drop to δ
(δ > 1). The selection of δ balances detection sensitivity
and robustness to noise, which is a common tradeoff in clus-
tering algorithms. We empirically evaluate the accuracy of
MFC as δ varies in the next section.

Figure 2 shows a sample walk of length 20 in an MFT
constructed based on synthetic data. Two clusters are em-
bedded on this walk at indices 4 and 13. Note the large
drops at these cluster boundaries in the regularized deriva-
tive function (but not in the ordinary derivative function).
The indices of these drops are returned as the final clusters.

A naive approach would be to traverse all paths, from
the root to every leaf of the MFT, to detect clusters. This
is mostly redundant however since many root-leaf paths on
the MFT are expected to share several nodes (especially
consecutive paths in a depth-first-search (DFS) traversal).
We define the similarity of two paths, P1 and P2, by

sim(P1, P2) =
|P1 ∩ P2|

min(|P1|, |P2|)
(4)

which is the number of common nodes normalized by their
minimum path length. Given a path Pi, we are not travers-
ing consecutive paths Pi+1, · · · , Pi+k if sim(Pi, Pi+k) > 80%.

4. EVALUATION WITH SYNTHETIC DATA
To evaluate the accuracy of the MFC algorithm, we cre-

ated synthetic n × n traffic matrices M , with n being the
number of addresses in each dimension. The element Mij is
the traffic volume from address i to j. It has been previously
shown in [8] that the log-normal distribution is a good model
for the volume distribution in a traffic matrix. To generate
the traffic matrix we leverage the method of [9]: for every
traffic exchange i→ j

Mij = pipj (5)

where pi and pj are identically distributed exponential ran-
dom variables with mean 1

λ
. The parameter λ controls the

heterogeneity of the traffic matrix.
To embed hierarchical clusters in the traffic matrix, each

element of the matrix is scaled by ghk , where k is a cluster,
hk is the depth of that cluster in the hierachy (e.g., h2 = 3
in figure 4) and g is a parameter to contol the density gap
between clusters and their surroundings. Furthermore, since
traffic matrices are typically very sparse (i.e., many pairs of
addresses do not exchange any traffic), we zeroed 90% of the
smaller elements in M .
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Figure 3: An example of a hierarchical traffic matrix and its
corresponding cluster tree on the right.

Figure 4: Detection accuracy of MFC algorithm evaluated
by our synthetic data

We generated 1000 synthetic traffic matrices with λ =
2, g = 5 and n = 1000. For each matrix, we run MFC
with δ = 5, l = 4 and K = 10. We measure the cluster
detection accuracy using the Jaccard similarity between the
ground-truth and the detected clusters. For a cluster Cgi in
the ground-truth dataset, the detection accuracy is

RCgi
= max

k
(J(Cgi , C

′
k)) (6)

where C′
k is a detected cluster k, and J(Cgi , C

′
k) is the Jac-

card similarity between those corresponding two clusters.
The accuracy over the whole set of clusters is given by the
following metric,

R =

∑
i VCgi

×RCgi∑
i VCgi

(7)

where each cluster Cgi is weighted by its volume.
The main result of this evaluation study is that the de-

tection accuracy is larger than 92% in half of the generated
traffic matrices. The accuracy is at least 87% when we con-
sider 80% of all traffic matrices (see figure 4).

5. CASE STUDY

ACM SIGCOMM Computer Communication Review Volume 47 Issue 5, October 2017



5.1 Collected enterprise macroflow dataset
We collected NetFlow version-9 records from one of the

major backbone routers of a large international enterprise
on November 16, 2016 for four hours starting at 10 a.m. lo-
cal time. Approximately three terabytes of traffic was routed
through router in every hour. In the remainder of the pa-
per, we use D1, D2, D3 and D4 to refer to the pre-processed
macroflow dataset for each successive hour of the collected
data. Given that most macroflows are quite small in vol-
ume, we removed the smaller flow records so that we only
keep those macroflows that capture 90% of the total traf-
fic volume. The number of macroflows in each dataset is
621509, 622625, 769624, and 943041 respectively. We then
separated macroflows in /8×/8 blocks; blocks with fewer
than 1000 macroflows were discarded.

The four macroflow datasets were further partitioned to
ingress, egress and transit traffic, as follows. Ingress traffic
has a destination address within that router’s enterprise site,
while the source address is outside that site. The opposite is
true for egress traffic. Macroflows where neither the source
nor the destination address are within that router’s site, is
transit traffic. For the collected dataset 40% of the traffic
is transit, 35% ingress and 25% egress. This distribution is
approximately the same for all four traces.

5.2 Results

5.2.1 Static analysis
When we apply the MFC algorithm on the D1 dataset, we

identify 760 egress, 1336 ingress and 1365 transit clusters.
The D1 clusters are of different sizes in the source or des-

tination dimensions. The first two graphs in Figure 6 show
the distribution of cluster sizes. Sizes vary from /14 to /28
prefixes in both dimensions. However, there is a strong mode
at the /24 prefix length in both the source and destination
dimensions. We confirmed that this enterprise uses mostly
/24 address blocks (in private IP space) for different orga-
nization units. Note that the variability of subnet sizes is
greater in transit traffic; ingress and egress traffic have a
sharper decrease around the /24 mode. Also, the distribu-
tion of subnet sizes in the source dimension of ingress traffic
is very similar to that of subnet sizes in the destination di-
mension of egress traffic. This is expected, given that if an
organization unit generates a lot of traffic in both the ingress
and egress directions, its address block will appear in both
ingress and egress traffic clusters.

Figure 6c illustrates the hierarchical depth of the detected
clusters in D1. The hierarchical depth of a cluster α is the
number of clusters upstream of α in the macroflow tree.
Figure 6c shows the distribution of hierarchical depth for
clusters with no downstream cluster (leaf clusters). Note
that most macroflows are in a cluster with hierarchical depth
of four or smaller. Transit traffic tends to have clusters of
larger hierarchical depth than both ingress and egress traffic.

The previous results were based on the default MFC al-
gorithm parameters (δ = 5, K = 10, l = 4). To test the
robustness of the MFC algorithm with respect to these pa-
rameters, we varied each of these parameters (one at a time)
and measured the Adjusted Rand Index (ARI) between the
new clusters and the clusters that correspond to the default
parameter values. The bottom row in Figure 6 shows the
ARI metric for these comparisons. This analysis was per-
fomed based on the largest (by volume) /8×/8 block in each

Figure 5: Run-time of MFC algorithm on five /8×/8 blocks
versus the normalized theoretical run-time.

traffic category. MFC returns highly similar clusters (ARI
larger than 90%) in a wide range around the default param-
eter value. The robustness is stronger for k and δ compared
to l.

As with other hierarchical clustering algorithms, the run-
time complexity of MFC is O(N2logN), where N is the
number of macroflows. Figure 5 shows the actual time it
takes for MFC to run on real datasets of different sizes. We
also show the theoretical run-time complexity normalized so
that it has the same value with real computation time for a
dataset of size N = 1546. This graph is based on five /8×/8
blocks of the D1 dataset. The MFC algorithm can be easily
parallelized and run on data collected from multiple routers
given that one can assign different large address blocks to
separate MFC instances.

5.2.2 Temporal analysis
We now investigate the extent at which the identified clus-

ters persist over time. In other words, if a cluster is detected
during a time epoch, will it also be detected in subsequent
time epochs? And if so, how similar will the corresponding
cluster boundaries be?

We run the MFC clustering algorithm for the four 1-hour
datasets and examine the temporal persistence of the top-10
clusters. For each cluster, we find its corresponding cluster
in another trace by searching for the cluster with the max-
imum Jaccard similarity. The Jaccard similarity between
two clusters is defined as the intersection area of their cor-
responding IPRECs divided by their union area. The av-
erage Jaccard index between all pairs of traces is shown in
Table 1, averaged over all top-10 clusters. Note that the
average Jaccard similarity is typically higher than 90% for
successive 1-hour time epochs, at least for egress and ingress
traffic. The Jaccard index of transit clusters is lower but still
higher than 60%.

Finally, Figure 7 illustrates the clusters’ IPRECs for dif-
ferent time slices. The first two rows are plotted based on
the D1 and D2 datasets. The last row corresponds to a more
recent dataset, collected on January 18th, 2017 - same week-
day and daytime as D1. The subplots in each column of the
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(a) Src. prefix length (b) Dst. prefix length (c) Hierarchical depth distribution

(d) Sensitivity analysis for δ (e) Sensitivity analysis for K (f) Sensitivity analysis for l

Figure 6: The results of running MFC on the D1 dataset. Top: the distribution of cluster sizes in the source and destination
dimensions; also, the distribution of the clusters’ hierarchical depth. Bottom: sensitivity analysis of MFC with respect to its
three parameters.

Figure 7: Cluster layouts for different traffic types (transit, egress, ingress) and time periods. Darker colors represent denser
clusters. Top: Clusters in a /16× /16 block of D1 (the block with the maximum number of clusters) for the three different
traffic types. Middle: Clusters in the same block but for D2. Bottom: Clusters in the same block but for an one-hour
dataset collected on January 18, 2017 at 10am local time (two months after the collection of the D1 trace).
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D1 D2 D3 D4
D1 100, 100, 100 94, 91, 81 83, 95, 64 83, 83, 41
D2 100, 100, 100 92, 88, 67 71, 85, 56
D3 100, 100, 100 88, 79, 65

Table 1: Average Jaccard similarity index between the top-
10 clusters in our four datasets. The three figures in each
entry refer to egress, ingress, and transit traffic, respectively.

figure are based on a same /16×/16 block. The block in each
column was selected so that it has the maximum number of
clusters in D1. Although one can see some changes across
different time slices (especially as the time gap increases),
there still exists significant similarity in the overall cluster
layout for different time slices.

The source code of the MFC algorithm is available at [10].

6. CONCLUSIONS
We presented a method to cluster and analyze NetFlow

data, without requiring a given number of clusters or a cer-
tain spatial aggregation scale (e.g., BGP prefix lengths). We
applied this method in flow data from an enterprise network
and observed that these clusters maintain a level of station-
arity that can be leveraged for practical network operations.
Instead of trying to understand what happens at the level
of individual flows, network operators can focus their anal-
ysis at the level of these clusters. We believe that it should
be possible to leverage historic and current NetFlow at the
resolution of the identified clusters to generate actionable
recommendations and applications, e.g., tracking the evolu-
tion of a cluster traffic for capacity planning and anomaly
detection by identifying abrupt changes in a cluster. Devel-
oping such applications will be the next step of this research.
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