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ABSTRACT
Network Functions Virtualization (NFV) has enabled opera-
tors to dynamically place and allocate resources for network
services to match workload requirements. However, un-
bounded end-to-end (e2e) latency of Service Function Chains
(SFCs) resulting from distributed Virtualized Network Func-
tion (VNF) deployments can severely degrade performance.
In particular, SFC instantiations with inter-data center links
can incur high e2e latencies and Service Level Agreement
(SLA) violations. These latencies can trigger timeouts and
protocol errors with latency-sensitive operations.

Traditional solutions to reduce e2e latency involve physi-
cal deployment of service elements in close proximity. These
solutions are, however, no longer viable in the NFV era. In
this paper, we present our solution that bounds the e2e la-
tency in SFCs and inter-VNF control message exchanges
by creating micro-service aggregates based on the affinity
between VNFs. Our system, C ontain-ed, dynamically cre-
ates and manages affinity aggregates using light-weight vir-
tualization technologies like containers, allowing them to be
placed in close proximity and hence bounding the e2e la-
tency. We have applied Contain-ed to the Clearwater [1] IP
Multimedia Subsystem and built a proof-of-concept. Our
results demonstrate that, by utilizing application and pro-
tocol specific knowledge, affinity aggregates can effectively
bound SFC delays and significantly reduce protocol errors
and service disruptions.
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1. INTRODUCTION
∗Work funded by Hewlett Packard Labs and done during
Amit Sheoran’s internship. This work has been presented at
the ACM SIGCOMM 2017 1st International Workshop on
Hot Topics in Container Networking and Networked Systems
(HotConNet).

In traditional deployments of large carrier-grade systems,
network service elements (functions) execute on hardware
with dedicated CPU, memory and storage resources. The
hardware boxes are connected via high speed links in oper-
ator data centers (DCs). Since the network is purpose-built
to handle predefined network elements (NEs) and work-
load, the deployment is optimized to meet service require-
ments [18]. This includes allocating adequate resources and
carefully placing NEs to meet latency requirements. NEs
that constitute a Service Function Chain (SFC) or, more
generally, a forwarding graph, are deployed in the same
data center, and are carefully configured to meet Service
Level Agreements (SLAs) or Quality of Service (QoS) re-
quirements.

Network Functions Virtualization (NFV) leverages Com-
mercial off-the-shelf (COTS) hardware to dynamically de-
ploy network services. New network service instances are
created by adding NEs to existing SFCs using virtualization
and programmable networking technologies such as Software
Defined Networking (SDN). NFV orchestration frameworks
can instantiate these Virtualized Network Functions (VNFs)
on-demand. The eventual placement of these VNFs is a bal-
ancing act by the orchestrator to meet both the QoS re-
quirements of the deployed service and the need for cloud
providers to maximize the utilization of the underlying in-
frastructure. Owing to the operational polices of the or-
chestrator and the physical locations of the data centers
that it manages, new NE instances may be located on differ-
ent racks or even different data centers. This, coupled with
the unpredictable latency variations due to the sharing of
the underlying physical infrastructure among services, can
cause violations of end-to-end (e2e) latency requirements
of SFCs [14]. Distributed instantiations of SFCs and la-
tency variations can cause significant performance degrada-
tion since current applications and network protocol stacks
are designed for traditional deployments and therefore react
poorly to such “unbounded” latencies.

In systems like Evolved Packet Core (EPC) and IP Mul-
timedia Subsystems (IMS) where multiple NEs participate
in service delivery, congestion on any interconnecting link
triggers message drops or retransmissions. Constituent NEs
often aggressively retransmit latency-sensitive messages to
ensure timely execution of the protocol call flows [9]. Such
re-transmissions aggravate network conditions, leading to
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further QoS deterioration. Since a single event/action can
produce multiple message exchanges among the constituent
elements in an SFC, an orchestrator must consider, when
placing the SFC elements, the type and frequency of mes-
sage exchanges among the SFC elements – a factor which is
not considered by current orchestration frameworks.

A natural solution to control latency with NFV is to in-
stantiate service elements within an SFC onto physical ma-
chines that are in close proximity. This ensures that conges-
tion in other parts of the DC, as well as latency due to inter-
DC communication, can be avoided. However, such a place-
ment policy will force cloud provides to preallocate VNF
resources in designated sections of the DC, ultimately un-
dermining their ability to maximize infrastructure resource
utilization. Even if such a policy can be implemented, the
footprints of current VM-based VNFs are far too large to
guarantee close proximity allocation. VNFs also support
mobile users: even if a user is assigned to an NE where all
SFC elements meet latency demands, user mobility makes
it impossible to sustain such assignments. The mobile user
can move across geographic regions, and this generally en-
tails handover of the user session to NEs physically closer
to the user location, which will inevitability result in user
traffic traversing multiple data centers.

In this paper, we explore the design of a small-footprint,
stateless and portable VNF solution based on aggregating
micro-services. Our solution, Contain-ed, meets latency de-
mands while simultaneously supporting user mobility and
elastic resource allocation. Contain-ed aims to:

1. Bound e2e service latency by creating collocated ag-
gregates of NEs.

2. Develop a service-aware, latency-sensitive orchestra-
tion and deployment framework at a low cost to the
provider.

More information, including our scripts, can be found at
http://www.cs.purdue.edu/homes/fahmy/contained/

2. CONTAIN-ED ARCHITECTURE
Our design is guided by two key observations: (1) VNF

Affinity: The number of messages among VNFs depends on
the standards being used and the SFC structure. For exam-
ple, in a virtualized EPC system [19], 41% of the signaling
messages that are incident on the Mobility Management En-
tity (MME) are propagated to the Serving Gateway (SGW),
but only 18% of the MME signaling load is propagated to the
Packet Data Network Gateway (PGW). Protocol message
exchanges and/or SFC dependencies enable us to identify
affinity between VNFs or VNF components (VNFCs). (2)
Transactional Atomicity: Transactions are sequences of
messages that are exchanged among VNFs/VNFCs to han-
dle a network event. Table 1 enumerates common network
events in the IMS and EPC systems. These network events
are often a result of user actions and each independent ac-
tion (e.g., REGISTER) can trigger a sequence of messages.
VNFs involved in processing a user’s messages generally al-
locate/update state information, and this state information
is used to process future messages of this user. The state
information is either stored locally (in traditional network
designs) or in shared storage (in NFV based designs). We
observe that, due to state dependencies, user messages that
are part of a specific transaction are, in general, processed

by a specific VNF instance. However, once the transaction is
completed, this state information can be shared with other
VNF instances to handle future transactions.

Contain-ed leverages these observations as follows. Affin-
ity dictates that certain VNFs in an SFC or VNFCs in a
complex VNF be placed in close proximity to meet e2e la-
tency requirements. The smaller resource footprint of virtu-
alization technologies like containers enables micro-service
bundles of VNFs with high affinity to be placed near each
other. Contain-ed creates network micro-service bundles
called Affinity Aggregates (AAs). AAs are bundles of net-
work services comprising VNFs that have message exchange
affinity towards each other. AAs are instantiated as a sin-
gle logical entity of micro-services using lightweight virtu-
alization technologies (containers). Each AA is configured
to handle a predetermined transaction type and only con-
sists of VNFs/VNFCs involved in processing this transaction
type. Contain-ed includes components for managing and or-
chestrating AA instances, with the goal of distributing load
across active AA instances and resource flexing according
to workload variations. Figure 1 illustrates the Contain-ed
architecture, whose components we now describe.

Affinity Analytics Engine (AAE): The AAE is an of-
fline module that analyzes SFC dependencies and message
exchange sequences to determine the required AA types.
The AAE uses the VNF affinity information derived from an-
alyzing the VNF messages exchanges to decide which VNFs
should be bundled together as an AA. The AAE also de-
termines transactional boundaries so that the same AA in-
stance is used to handle a transaction’s message exchange
sequence in an atomic manner. Additionally, the AAE de-
termines what to store in the shared state store across all
AA instances.

A single transaction can generate significant amounts of
intermediate state information, based on the structure of the
SFC and the protocols involved. While it is possible to pub-
lish all intermediate state information generated by an AA
to the shared state store, such a design would lead to sig-
nificant performance degradation due to increased message
exchanges between the AAs and the state store. Further-
more, all intermediate state information is not required by
the VNFs/VNFCs to handle independent transactions. As
an example, the MME processes 10 of the 18 messages gen-
erated during the EPC Attach procedure [19], and each of
these message exchanges is capable of generating intermedi-
ate state information. However, if the AA instance that han-
dles the Attach request does not change during Attach pro-
cedure, there is little merit in publishing intermediate state
information to the state store. The AAE therefore leverages
transactional boundaries to determine the minimum state
information that must be shared across AA instances. Only
state information that persists across transactions is pub-
lished in the state store.

Contain-ed transactions are specific to an SFC, and the
messages that constitute a transaction are driven by protocol
bindings within the SFC. Example message exchanges for
IMS and their transaction boundaries are shown in Figure 3.
Table 1 lists the AA types from our analysis of IMS and
EPC protocol message exchanges and latency requirements.
When AAs have the same VNFs, the same AA type can
be used to handle different kinds of transactions/network
events. For services such as Home Subscriber Server (HSS),
Policy and Charging Rules Function (PCRF) and Online
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Figure 1: Contain-ed Architecture

Charging System (OCS) that need database lookups, the
Front End (FE) component [8] can be instantiated with the
AA. The REGISTER AA can also contain the Application
Server (AS) if specified in the Initial Filter Criteria (iFC) [6,
7].

AA Flex Orchestrator (AFO): The AFO manages the
life-cycle of AA instances. It continuously monitors their re-
source usage and workload. If the latency requirements of
a specific request type are not being met, the AFO deploys
new AA instances with appropriate resources and at ap-
propriate locations to meet the latency requirements. Con-
versely, if the workload decreases, the AFO removes un-
needed AA instances after migrating active user sessions to
other active AAs. Contain-ed transactions are short-lived
compared to user sessions, which enables the AFO to elasti-
cally manage the resource allocation for the incoming work-
load. AA instance information is communicated to the AA
Director for forwarding transactions. For example, all VNFs
that participate in user registration can be bundled into a
REGISTER AA type. Depending on the allocated resources
(hence capacity of the AA type) and expected peak load, the
AFO determines the number of instances of this AA type to
deploy and how/when to add/remove instances to match
workload dynamics.

AA Director (AD): The AD is an online module that di-
rects incoming traffic to different active AA instances based
on transaction types. The AD maintains a list of all active
AA instances and their capabilities, and directs traffic (along
transaction boundaries) accordingly. Multiple instances of
a particular AA type can coexist with different resource al-
locations. When a new AA instance is spawned, the AFO
updates the AD with its AA type and resource allocation.

Table 1: IMS and EPC Affinity Aggregates (AAs)
Network Event VNFs in AA AA Type

IP Multimedia Subsystem (IMS)

REGISTER P/I/S-CSCF
HSS

REGISTER

INVITE P/I/S-CSCF
AS, OCS

INVITE

NOTIFY
SUBSCRIBE

P/I/S-CSCF SUBSCRIBE

Evolved Packet Core (EPC)

ATTACH MME, HSS, SGW
PGW, PCRF

ATTACH-DETACH

DETACH MME, HSS, SGW
PGW, PCRF

ATTACH-DETACH

HANDOVER MME, SGW HANDOVER-SR
BEARER
SETUP

MME, SGW
PGW, PCRF

BEARER-CRT

SERVICE
REQUEST (SR)

MME, SGW HANDOVER-SR

This enables the AD to intelligently load-balance the incom-
ing workload on available AA instances. The AD analyzes
each incoming packet to classify it according to the AA types
and transaction boundaries. All messages associated with a
particular transaction (e.g., messages that are part of a sin-
gle user registration request) that were handled by a specific
AA instance will continue to be directed to the same instance
until the transaction is completed. This implies that AAs
can only be deleted when there are no active transactions
pending. When the AFO decides to scale-in an AA instance,
the AD removes it from the active list and stops sending new
transactions to it.

A single AD instance is capable of handling incoming traf-
fic for multiple AA types. In cases where these AAs are part
of different systems, such as the EPC and the IMS, which use
different signaling protocols, the AD has to support multiple
protocols. The AD is not, however, required to understand
all the protocols that are used within the SFCs. For ex-
ample, an analysis of the AAs in Table 1 reveals that all
inbound messages for the IMS AAs use the Session Initia-
tion Protocol (SIP) [3]. Similarly, AAs in the EPC system
use the GPRS Tunneling Protocol (GTP-C) [11] for all in-
bound messages. Therefore, an AD that handles both EPC
and IMS traffic using the AAs described in Table 1 is only
required to support the SIP and GTP-C protocols.

Shared State Store (SSS): The shared state store is
used by AA instances to store persistent state information
across transaction boundaries. This allows incident work-
load to be distributed across multiple AA instances. The
SSS is implemented as a key-value store and is agnostic to
the actual structure/definition of state elements as specified
by VNFs. The AAs use a simple Representational State
Transfer (REST) based interface to store/fetch the sate in-
formation. Several VNFs (including Clearwater which we
use in our evaluation) already support persistent state in-
formation management for horizontal scaling of individual
components. The SSS can be deployed as a geographically
redundant cluster when a single instance cannot handle the
workload. The AFO can create multiple instances of the SSS
in case the data store/fetch latency exceeds a predetermined
threshold.

Contain-ed determines VNFs/VNFCs that handle mes-
sages of a specific transaction type and deploys these VNFs
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or VNFCs as a single AA. For example, Contain-ed can cre-
ate an AA that handles only REGISTER messages (REGISTER-
AA) and another that only handles messages of type IN-
VITE (INVITE-AA) as described in Table 1. Such a de-
composition of the functionality of an SFC into AAs offers
the following key advantages: (1) Since not all elements of
an SFC are involved in processing all transaction types, the
resource requirements of an AA can be significantly lower
than that of the original SFC. AAs with lower resource foot-
prints are more likely to be instantiated in close proximity
as compared to the entire SFC. (2) AAs enable granular re-
source allocation by coupling resource allocation with traffic
composition. The AFO can scale-out AAs handling a spe-
cific transaction type as the percentage of messages of that
transaction type increases. This allows Contain-ed to react,
in real time, to incoming traffic composition.

3. CONTAIN-ED IN ACTION
In this section, we illustrate how Contain-ed can be lever-

aged for deploying an IMS instance to increase the utiliza-
tion of the underlying NFV infrastructure.

3.1 Project Clearwater: IMS in the Cloud

Homestead
(HSS Mirror)UE

Ellis
(Test Provisioning)

Ralf
(Rf CTF)

memcached

Homer
(XDMS)

Cassandra

Sprout
(I/S-CSCF, 

BGCF, TAS)

memcached Cassandra

Homestead
(HSS Mirror)SIPSIP HTTP

XCAPHTTP

HTTP

HTTPHTTP

Bono
(P-CSCF, 
WebRTC)

Figure 2: Clearwater Architecture

We choose Clearwater, an open-source IMS implementa-
tion. The availability of a containerized implementation of
Clearwater enabled us to better compare performance of
different IMS deployment options. While Clearwater pro-
vides a horizontally scalable clustered IMS implementation,
the VNF components in Clearwater do not strictly match
standard IMS functional elements. Clearwater utilizes web-
optimized technologies like Cassandra and memcached to
store long-lived state, provide redundancy, and eliminate the
need for state replication during scale-in and scale-out.

The architecture of Clearwater is illustrated in Figure 2
(adapted from [1]). For brevity, only the components used
in our experiments are depicted. We briefly explain the
Clearwater components that can be deployed individually
and horizontally scaled. Bono is the edge proxy component
that implements the P-CSCF (Proxy Call Session Control
Function) in the 3GPP IMS architecture [7]. SIP clients
communicate with Bono over UDP/TCP connections and
are anchored at a Bono instance for the lifetime of the reg-
istration. Sprout implements the Registrar, I/S-CSCF (In-
terrogating/Serving CSCF) and Application Server compo-
nents. Sprout nodes store the client registration data and
other session and event state in a memcached cluster. There
are no long-lived associations between a user session and a
Sprout instance. Homestead provides a REST interface

                                                                  SIP INVITE

                                                                                 

Bono Sprout Homestead
Application

Server

 REGISTER HTTP GET /impi

SIP 
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HTTP 200 OK
UNAUTHORIZED
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HTTP PUT /impu
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Figure 3: Clearwater IMS Call Flow

to Sprout for retrieving the authentication vectors and user
profiles. Homestead can host this data locally or retrieve it
from the HSS using the Diameter Cx interface. Homer acts
an XML Document Management Server that stores the ser-
vice profiles. Ralf implements the Off-line Charging Trigger
Function (CTF). Bono and Sprout report chargeable events
to Ralf. Figure 3 illustrates this call flow without a third-
party REGISTER in the iFC.

3.2 Mapping with Contain-ed
We determine the AAs by applying the principles in Sec-

tion 2: (1) VNF Affinity: Analyzing the 3GPP IMS ar-
chitecture [7], we find that there is high affinity between the
P-CSCF and S-CSCF components. Therefore, we can aggre-
gate the Bono and Sprout nodes in Clearwater to create an
AA. (2) Transactional Atomicity: We demonstrate the
application of this principle by analyzing user registration
in IMS, which generates two messages by the user device.
Since both messages must be handled by the same instance
of Bono and Sprout, we consider user registration as a trans-
actional boundary.

We thus create an AA of type “REGISTER” correspond-
ing to the SIP REGISTER call flow. A similar reasoning al-
lows us to create AAs of types“SUBSCRIBE”and“INVITE”
for the IMS user SUBSCRIBE/NOTIFY and INVITE call
flows, respectively. The AAs for “REGISTER” and “SUB-
SCRIBE” consist of an instance of Bono and Sprout, while
the AA for “INVITE” additionally contains an instance of
Ralf due to the CTF interaction described in Table 1. We
do not use an Application Server (AS) in our testing, so it
is not included in the AAs.

In Clearwater, Bono and Sprout operate in a transaction-
stateful manner. Transactions in the same SIP dialog can be
handled by a different Sprout instance since the Sprout in-
stances share long-lived user state using memcached. Clear-
water therefore supports the transactional atomicity prop-
erty of Contain-ed. Contain-ed leverages the Clearwater
memcached as the shared state store.
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We develop the AD component based on the OpenSIPS [2]
dispatcher. In this implementation, the AD anchors all the
incoming and outgoing calls from Clearwater and acts a
stateless inbound proxy. It uses a hash on the message“Call-
ID” to direct incoming request messages. This mechanism
ensures that the messages for the same user session are di-
rected to the same AA instance. For outgoing messages, the
AD inserts appropriate SIP headers to ensure that messages
take appropriate paths.

4. EXPERIMENTAL EVALUATION
We developed a prototype implementation of the Contain-

ed deployment component (the dark shaded box in Figure 1).
We use the information in Table 1 to bundle the Clearwa-
ter components into AA types. The AAs are instantiated
at startup to match the workload requirements (the AFO
dynamic scaling/instantiation functionality is not yet im-
plemented).

4.1 Experimental Setup
We use Docker version 17.03.0-ce and Docker-compose

(v1.11.2) for micro-service container lifecycle management.
The Clearwater VNF components run within a container
on the same physical host. A private subnet created by
Docker is used for communication between these containers,
thereby minimizing the communication latency among the
Clearwater VNF micro-services. The physical resources of
the server are shared by all containers and there are no re-
source constraints on an individual container. The Contain-
ed AD component is deployed on the same physical machine
as the Clearwater VNF. The AD runs on the physical ma-
chine directly, and therefore shares the resources with the
Clearwater VNF components.

Workload generation: We use SIPp [4] as a work-
load generator. SIPp runs on a dedicated physical machine,
and generates two types of requests: REGISTER and SUB-
SCRIBE. As shown in Figure 3, REGISTER requests are
used to register the user device in the network and result in
the generation of two messages (initial request and challenge
response) from the user device. SUBSCRIBE requests are
used to subscribe to the the state of a user already registered
with Clearwater. A SUBSCRIBE request from the request-
ing client is followed by a NOTIFY request from the server
to update the client with the user subscription status. We
measure the number of failures by the observing the result
code in the SIP response message. Per the SIP specification,
for register, “200 OK” indicates success and “401 Unautho-
rized” is used to challenge. All other 3XX and 4XX codes
are considered failures. We observe the error codes received
by SIPp for each message type and use them to infer the
number of failures.

We generate a workload of 300 requests/s to 1800 re-
quests/s in steps of 300 requests/s, and measure the total
number of failed calls for each workload type. As described
earlier, aggressive retransmission of requests by the client or
middleboxes can exacerbate performance problems, so we
disable this to increase the overall throughput. In order
to circumvent the impact of retransmissions on our exper-
iments, we configure SIPp to not retransmit requests that
failed due to timeouts. Each experiment runs for 60 seconds.
The results presented below represent the mean of at least
10 samples for each call rate and delay value.

The performance of a complex VNF like Clearwater is im-

pacted by the control interplay among its functional com-
ponents. Previous studies [13] have revealed that dispro-
portionate resource utilization by Clearwater components
can influence system performance, and the overall through-
put depends on the resources allocated to individual com-
ponents. Clearwater employs token buckets and timeout-
based peer blacklisting mechanisms for fault-tolerant over-
load control. This can also influence the overall throughput.
Furthermore, individual components may timeout and dis-
card incoming requests. As an example, Sprout uses a timer
to wait for the response messages from Homestead, and if
no response is received before a timeout, a failure response
(response code timeout 408) is issued to the client. To mini-
mize the impact of disproportionate resource utilization, we
do not allocate dedicated resources to any container and all
Clearwater components share the available system resources.
However, overall performance is limited by the token bucket
rate and timeout(s) at individual components, resource uti-
lization notwithstanding.

4.2 Experimental Results
Our experiments are designed to investigate the impact of

network latency on Clearwater, and to quantify the perfor-
mance benefits of Contain-ed. We begin by benchmarking
Clearwater in “ideal” conditions on our testbed. In this case,
all communicating VNF components are instantiated on the
same physical machine. A single instance of Clearwater is
created and both REGISTER and SUBSCRIBE messages
are handled by this instance. This setup is labeled “ideal” in
our plots. We measure the performance of this setup with
both REGISTER and SUBSCRIBE workloads.

Homestead

State Store
memcached

Cassandra

REGISTER Affinity Aggregate Instance

SproutBono
Aggregate 
Director

Load 
Generator

Figure 4: Contain-ed setup with REGISTER AA
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Figure 5: Successful REGISTER calls

We also measure the performance of Clearwater when the
VNF components are not located on the same physical ma-
chine and therefore the communication latencies are higher
than the ideal case. We simulate a scenario where the Sprout
node is located in a different DC by adding delays on the
Sprout-bound links. As described earlier, the SIP REGIS-
TER request generates two register messages from Bono to
Sprout and two database lookup requests from Sprout to
Homestead, and therefore Sprout placement is vital to the
performance of Clearwater. We use “tc” to introduce delays
on the links from Bono to Sprout and Sprout to Homestead.
We use delays of 5 ms, 10 ms, 15 ms, 20 ms and 25 ms and
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compare the performance of this setup with the “ideal” case.
Figures 5 and 7 present the results. In both figures, the error
bars represent the minimum and maximum values observed
among all samples for a data point. The label “Target” in
the figures indicates the maximum number of calls that can
be successfully processed at a given call rate.

As seen from Figures 5 and 7, increasing communication
latency to a single Clearwater component (Sprout) can result
in significant performance degradation. The impact of the
introduced latency is not significant at low call rates. How-
ever, as the call rate reaches the system capacity, there is
significant drop in system throughput. This is a consequence
of the timeouts experienced at individual components. As
load increases, the number of messages that are waiting for
a response at each individual component becomes larger,
and higher system capacity is utilized in sending timeout
responses at each individual component.

We now describe our experimental setup using Contain-
ed. Figure 4 shows an instantiation of Contain-ed to handle
REGISTER messages. It consists of the REGISTER AA
(Sprout and Bono), the shared state store, Homestead, and
the AD. Figure 6 depicts the setup of Contain-ed for han-
dling SUBSCRIBE. This setup consists of two AAs (REG-
ISTER, SUBSCRIBE), since the users must be registered
before SUBSCRIBE messages. Both the REGISTER and
SUBSCRIBE AAs contain an instance of Bono and Sprout.
All other VNF components like Homestead and the shared
state store are shared by the AAs. For the SUBSCRIBE
setup, all REGISTER messages are handled by the REGIS-
TER AA, and SUBSCRIBE/NOTIFY messages are handled
by the SUBSCRIBE AA. A single instance of AD is created
in both the cases, which forwards the incoming traffic to the
appropriate AA.
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Figure 6: Contain-ed setup with REGIS-
TER/SUBSCRIBE AAs
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Figure 7: Successful SUBSCRIBE calls

Comparing the results of Contain-ed with “ideal” in Fig-
ures 5 and 7, we conclude that the AD does not result in
significant call drop compared to the ideal setup, and the
overhead due to the AD does not significantly impact overall
performance. The DC setup with induced latency increas-
ingly drops higher numbers of messages as the latency in-
creases, but the Contain-ed setup continues to process mes-
sages without suffering from significant performance degra-

dation. Even when multiple AA instances of different types
are created, the performance impact of the AD and Contain-
ed is minimal.

It is important to note that workloads react differently
to increasing latency. This is due to the nature of com-
munication between various components within the VNF.
User actions that require memory lookup/update (autho-
rization/billing events) will respond poorly to increased la-
tency towards the memcached/cassandra components and
workloads that require frequent communication with other
components like SUBSCRIBE will respond poorly to in-
creased latency towards state management components within
the VNF. With traditional network placement, it is difficult
to strike the right balance between workloads and their de-
pendencies. In contrast, the Contain-ed setup can ensure co-
location of VNF components for each workload type, and,
as seen from the results above, will continue to process var-
ious workload types without suffering from significant per-
formance degradation.

5. RELATED WORK
Placement problems and network latency have been widely

studied in the context of NFV. A generally accepted di-
rection for scalable cloud-based infrastructure is decoupling
user state storage from VNF processing logic. Kablan et
al [16] investigate a stateless design that leverages technolo-
gies like RAMCloud over InfiniBand to demonstrate how a
NAT function can be decomposed into packet processing and
data. The focus of their work is, however, on demonstrating
how a stateless design improves the elasticity of NFV deploy-
ments. They do not consider the impact of stateless design
principles on limiting e2e latency. Decoupled control and
user plane network functions are also described in [5]. This
work aims at minimizing communication latency between
the control plane elements while simultaneously bringing the
user data processing elements close to the network edge, im-
proving the overall user experience.

Basta et al [12], Hawilo et al [15] and Katsalis et al [17]
propose redesign of existing networks to reduce latency. There
is, however, little work that uses container-driven backward-
compatible solutions. Basta et al [12] explore several imple-
mentation models in which v-EPC can be deployed. How-
ever, the implementation models proposed can result in ex-
tensive refactoring of existing implementations. The scope
of their work is limited to the placement of the user and
control planes in EPC gateways, and does not include com-
mon principles that can be applied to any SFCs. Hawilo
et al [15] discuss a scheme for bundling EPC components,
guided by the principles of a flat architecture and the decou-
pling of the control and user planes. While this architecture
proposes bundling an NF and provides an analysis of the
benefits of the proposed architecture, it does not investigate
how these changes can be implemented in current architec-
tures. The work closest to ours was conducted by Katsalis
et al [17]. This work analyzes a stateless 5G design pattern.
They propose a micro service-driven stateless RAN archi-
tecture which uses shared control plane contexts for data
storage. The work is limited to the analysis of RAN and
does not delve into the application of this design to general
SFCs.

6. DISCUSSION AND FUTURE WORK
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[Aggregate Director implementation] The AD is a
protocol-aware online module that classifies each incoming
packet, and can consume significant resources. However,
there are existing NEs in current telecommunication net-
works that inspect and classify incoming traffic, and the AD
can leverage such gateway elements to minimize resource
utilization. In IMSes, the P-CSCF component anchors all
inbound signaling traffic. Similarly, the Diameter Routing
Agent [10] processes incoming Diameter signaling messages
in the EPC. Whenever possible, such existing elements can
be enhanced to support the functionality of the AD.

[State synchronization overhead] Contain-ed uses per-
sistent state information shared across AA instances to avoid
pinning of requests to a particular AA instance. State syn-
chronization overhead can be kept minimal by appropriately
determining transaction boundaries and only pushing per-
sistent state to the shared state store.

[Flow control] VNF implementers employ throttling based
flow control between different VNFs to prevent instability.
This is particularly important when capacities of different
VNFs are not matched. Clearwater uses token buckets to
gracefully manage overload. In Contain-ed, VNFs/VNF
components within the same AA can be appropriately pro-
visioned warranting overload detection and gating control
only at the AA ingress. This can further improve resource
utilization, as overhead can be eliminated from each partic-
ipating VNF.

[Legacy VNF implementations] The Clearwater im-
plementation we evaluated had several design features such
as shared state store (SSS) for horizontal scaling. However,
not all VNF implementations are amenable to direct ap-
plication of Contain-ed. Additional stubs may be required
for pushing state information to the SSS. We believe that
adoption of container technologies and micro-service design
principles will reduce the number of VNF implementations
requiring significant modification.

[Future work] We need to better understand the per-
formance impact of the functional components of Contain-
ed, especially the aggregate director and the shared state
store modules. Since the AD anchors all incoming traffic, it
may become a single point of failure. Future versions of the
Contain-ed framework will explore a distributed AD design
to deploy a load balancing cluster with multiple instances.
Considering the importance of clustering in Contain-ed, it
is also vital to understand the performance impact of the
SSS. The relative placement of the SSS w.r.t. to individual
AAs dictates the number of AAs that can be simultaneously
instantiated without violating the SLAs. Therefore, a bet-
ter understanding of the performance overhead introduced
due to the SSS is imperative in deciding the capacity and
placement of the AAs. In addition, our future work will
explore how to leverage Contain-ed for emerging network
architectures such as the 3GPP Machine-Type Communica-
tions (MTC) networks and dedicated core networks in the
EPC core.
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