
Public Review for

Charting the Algorithmic Complexity of
Waypoint Routing - A Guided Walk

Saeed Akhoondian Amiri, Klaus-Tycho Foerster
Riko Jacob, Stefan Schmid

In networks that only contain routers, routing is often equivalent to solving
a variation of the shortest paths problem. However, with the deployment of
middleboxes and solutions such as Network Function Virtualisation (NFV),
the paths followed by packets is not anymore a shortest path. Many net-
works now require paths that include specific waypoints for some source and
destination pairs.
From an algorithmic viewpoint, routing through waypoints is a di↵erent prob-
lem than routing along the shortest paths according to a given metric. In
this paper, the authors examine a variety of algorithms to solve this waypoint
routing problem. The reviewers liked the presentation of various algorithmic
results in a coherent context. However, they complained that there were not
enough discussions on solutions that are deployed in real networks.

Public review written by
Katerina Argyraki

EPFL

ACM SIGCOMM Computer Communication Review Volume 48 Issue 1, January 2018

Charting the Algorithmic Complexity of Waypoint Routing
A Guided Walk

Saeed Akhoondian Amiri1, Klaus-Tycho Foerster2, Riko Jacob3, Stefan Schmid4

1 MPI Saarland, Germany, 2 Aalborg University, Denmark,
3 IT University of Copenhagen, Denmark, 4 University of Vienna, Austria

ABSTRACT
Modern computer networks support interesting new routing
models in which tra�c flows from a source s to a destination t
can be flexibly steered through a sequence of waypoints, such
as (hardware) middleboxes or (virtualized) network functions
(VNFs), to create innovative network services like service
chains or segment routing. While the benefits and technolo-
gical challenges of providing such routing models have been
articulated and studied intensively over the last years, less
is known about the underlying algorithmic tra�c routing
problems. The goal of this paper is to provide the network
community with an overview of algorithmic techniques for
waypoint routing and also inform about limitations due to
computational hardness. In particular, we put the waypoint
routing problem into perspective with respect to classic graph
theoretical problems. For example, we find that while com-
puting a shortest path from a source s to a destination t
is simple (e.g., using Dijkstra’s algorithm), the problem of
finding a shortest route from s to t via a single waypoint
already features a deep combinatorial structure.

CCS Concepts
•Networks ! Routing protocols;

Keywords
Waypoints, VNFs, Algorithms, Complexity

1. INTRODUCTION
1.1 The Motivation: Service Chaining and

Segment Routing
We currently witness two trends related to the increasing

number of middleboxes (e.g., firewalls, proxies, tra�c optimi-
zers, etc.) in computer networks (in the order of the number
of routers [14]): First, there is a push towards virtualizing
middleboxes and network functions, enabling faster and more
flexible deployments (not only at the network edge), and re-
ducing costs. Second, over the last years, innovative new
network services have been promoted by industry and stan-
dardization institutes [6], by composing network functions to
service chains [12, 24]. The benefits and technological chal-
lenges of implementing such more complex network services
have been studied intensively, especially in the context of
Software-Defined Networks (SDNs) and Network Function
Virtualization (NFV), introducing unprecedented flexibili-
ties on how tra�c can be steered through flexibly allocated
(virtualized) network functions (VNFs).

However, much less is known today about the algorithmic
challenges underlying the routing through such middleboxes
or network functions, henceforth simply called waypoints.
In a nutshell, the underlying algorithmic problem is the
following: How to route a flow (of a certain size) from a given
source s to a destination t, via a sequence of k waypoints

(w1, . . . , wk)? The allocated flow needs to respect capacity
constraints, and ideally, be as short as possible.

The problem can come in many di↵erent flavors, depending
on whether a shortest or just a feasible route needs to be
computed, depending on the number k of waypoints, depen-
ding on the type of the underlying network (e.g., directed vs
undirected, Clos vs arbitrary topology), etc. Moreover, as
middleboxes provide di↵erent functionality (mostly security
and performance related), waypoints may or may not be
flow-conserving : e.g., a tunnel entry point may increase the
packet size (by adding an encapsulation header) whereas a
wide-area network optimizer may decrease the packet size
(by compressing the packet).

The goal of this paper is to identify algorithmic techniques
to solve the di↵erent variants of the waypoint routing pro-
blem, as well as to explore limitations due to intractability.

1.2 The Problem: Waypoint Routing
More formally, inputs to the waypoint routing problem are:

1. A network: represented as a graph G = (V,E),
where V is the set of n = |V | switches/routers/middle-
boxes (i.e., the nodes) and where the set E of m = |E|
links can either be undirected or directed, depending
on the scenario. Moreover, each link e 2 E may have a
bandwidth capacity c(e) and weights !(e) (describing
costs), both non-negative. If not stated otherwise, we
assume that c(e) = 1 and !(e) = 1 for all e 2 E.

2. A source-destination pair (s, t) and a sequence

of waypoints (w1, . . . , wk): which need to be traver-
sed along the way from s to t, forming a route (s, w1,
. . . , wk, t). Unless specified otherwise, we will assume
at most one waypoint per node, though it may be that
s = t. Waypoints may also change the tra�c rate: We
will denote the demand from s to w1 by d0, from w1

to w2 by d1, etc. That said, if not stated explicitly
otherwise, we will assume that d0 = d1 = . . . = dk = 1.

In general, one is interested in shortest routes (an optimi-

zation problem), i.e., routes of minimal length |R|, such
that link capacities are respected. However, we also consider
the feasibility of routes: is it possible to route the flow with-
out violating link capacities at all (a decision problem)?

ACM SIGCOMM Computer Communication Review Volume 48 Issue 1, January 2018

Waypoints Feasible Optimal Demand Change Feasible Optimal

Undirected

1 P (Thm. 1)
NPC (Thm. 2)

constant P (Thm. 5) ?

arbitrary NPC (Thm. 6)

Directed

1
NPC (Thm. 3)constant

arbitrary

Table 1: Overview of the Complexity Landscape for Waypoint Routing in General Graphs.

Sometimes, minimizing the total route length alone may
not be enough, but additional, hard constraints on the
distance (or stretch) between a terminal and a waypoint or
between waypoints may be imposed.

1.3 The Twist: It’s a walk!
We will show that the waypoint routing problem is related

to some classic and deep combinatorial problems, in parti-
cular the disjoint path problem [4, 5, 27] and the k-cycle
problem [3]. In contrast to these problems, however, the ba-
sic waypoint routing problem considered in this paper comes
with a fundamental twist: routes are not restricted to form
simple paths, but can rather form arbitrary walks, as long as
capacity constraints in the underlying network are respected.
Indeed, often feasible routes do not exist if restricted to a
simple path, see Fig. 1 for an example in which any feasible
route must contain a loop.

s tw

Figure 1: A route (s, w, t) in the depicted net-

work must contain a loop. The only solution is

the walk s, w, s, t, resulting from concatenating the

red (s, w) and blue (w, t) paths. It can hence not be

described as a simple path.

The problem is non-trivial. For example, consider the
seemingly simple problem of routing via a single waypoint,
i.e., a route of the form (s, w, t). A naive algorithm could
try to first compute a shortest path from s to w, deduct the
resources consumed along this path, and finally compute a
shortest path (subject to capacity constraints) from w to t on
the remaining graph. However, as we will see shortly, such a
greedy algorithm is doomed to fail; rather, route segments
between endpoints and waypoints must be jointly optimized.

1.4 Our Contributions
This paper initiates the algorithmic study of the waypoint

routing problem underlying many modern networking appli-
cations. Waypoint routing is becoming increasingly relevant
in the context of modern networking services and applicati-
ons, such as service chaining [24] (where tra�c needs to be
steered through network functions), hybrid SDNs [18] (where
tra�c is steered through OpenFlow switches) or in segment
routing [9] (where MPLS labels are updated at segment
endpoints).
We show that whether and how e�ciently a feasible or

shortest waypoint route can be found depends on the scenario,
and chart a complexity landscape of the waypoint routing
problem, presenting a comprehensive set of NP-hardness
results and e�cient algorithms for di↵erent scenarios. In
particular, we establish reductions from resp. to classic com-
binatorial problems, and also derive several new algorithms
from scratch which may be of interest beyond our scope.

In summary, we make the following observations. For a
single waypoint (k = 1) we find that:

1. Waypoint routes can be computed e�ciently on

undirected graphs: We establish a connection to the
classic disjoint paths problem, but show that while
the 2-disjoint paths problem is notoriously hard and
continues to puzzle researchers [4], a route via a single
waypoint can in fact be computed very e�ciently.

2. Waypoints which change the flow size are chal-

lenging: We find that routing through a single waypoint
is NP-hard in general if the waypoint changes the flow.

3. Directed links make it hard as well: While there
are fast algorithms for undirected networks, the waypoint
routing problem is NP-hard already for a single waypoint
on directed graphs.

4. Supporting absolute distance and stretch con-

straints is di�cult: We point out another frontier
for the computational tractability of computing routes
through a single waypoint: the problem also becomes
NP-hard if in addition to minimizing the total length
of the route, there are hard distance (or stretch con-
straints) between the source resp. destination and the
waypoint.

For multiple waypoints (arbitrary k), we show:
1. Routes through a fixed number of waypoints

can be computed in polynomial time: This result
follows by a reduction to a classic result by Robertson
and Seymour [25].

2. Already the decision problem is hard in general:

For general k, even on undirected graphs, the decision
problem (whether a feasible route exists) is NP-hard.

An overview of our complexity results shown in this paper
can be found in Table 1. We further note that in the following
figures, we will draw (s, w) paths in solid red and (w, t) paths
in solid blue, depicting alternative paths in a dotted style.

1.5 Paper Organization
We study routing problems via a single waypoint in Sec. 2

and via multiple waypoints in Sec. 3. We cover further related
work in Sec. 4, and conclude in Sec. 5.

2. ROUTING VIA A WAYPOINT
We start by considering the fundamental problem of how

to route a flow from s to t via a single waypoint w.

2.1 Undirected Graphs Are Tractable
Many graph theoretical problems revolve around undi-

rected graphs, and we therefore also consider them first. In
undirected graphs, flows can consume bandwidth capacity in
both directions: e.g., a link of capacity two can accommodate
two unit-size flows traversing it both in opposite directions
as well as in the same direction.

Before delving into the details of our algorithms and hard-

ACM SIGCOMM Computer Communication Review Volume 48 Issue 1, January 2018

ness results, we make some general observations. First, we
observe that a (shortest) route (s, w, t) can be decomposed
into two segments (s, w) and (w, t). While (s, w, t) can con-
tain loops, the two segments (s, w) and (w, t) are simple paths,
without loss of generality: any loop on a route segment can
simply be shortcut. More generally, we observe the following.

Observation 1. A shortest route (i.e., a walk) through

k waypoints can be decomposed into k + 1 simple paths Pi

between terminals and waypoints: R = (P1, . . . , Pk+1).

Second, we observe that we can transform the capacitated
problem variant to an uncapacitated one, by replacing ca-
pacitated links with a (rounded-down) number of parallel,
uncapacitated links. Computing a capacity-respecting walk
on the capacitated graph is then equivalent to computing a
link-disjoint path on the uncapacitated network. These ob-
servations provide us with a first idea to compute a shortest
route (s, w, t): we could simply compute the two optimal
paths (s, w) and (w, t) independently. That is, we could
route the first segment from s to w along the shortest path,
subtract the consumed bandwidth along the path, and then
compute a shortest feasible path from w to t on the remai-
ning graph. The example depicted in Fig. 2 shows how this
strategy fails. Therefore, we conclude that in an undirected
setting, we need to jointly optimize the two paths.

s

u wt

v3 v2

v1

v4

Figure 2: In undirected graphs, path segments need

to be jointly optimized: greedily selecting a shortest

path from s to w can force a very long path from w
to t. Once the solid red (s, w) path has been inserted

first as a shortest path, there is only one option for

the solid blue (w, s) path, resulting in a walk length

of 2+6 = 8. A joint optimization leads to the dotted

red (s, w) path and the dotted blue (w, t) path, with

a total length of 4 + 2 = 6.

However, the above observations also allow us to compute
an optimal solution: the computation of shortest link-disjoint
paths (s1, t1) and (s2, t2) is a well-known combinatorial pro-
blem, to which we can directly reduce the waypoint routing
problem by setting s1 = s, t1 = s2 = w, t2 = t. Unfortunately
however, while a recent breakthrough result [4] has shown
how to compute shortest two disjoint paths in randomized
polynomial time, the result is a theoretical one: the order of
the runtime polynomial is far from practical.
Yet, there is hope: our problem is strictly simpler, as the

two paths have a common endpoint t1 = s2 = w. Indeed, the
common endpoint w can be leveraged to employ a reduction
to an integer flow formulation: introduce a super-source S+

and a super-destination T+, connect S+ to s and t, and T+

to w with two links, all of unit capacity, see Fig. 3.
Next, solve the minimum cost integer flow problem from S+

to T+ with a demand of 2. By performing flow decomposition
and removing S+, T+, we obtain an s� w and a w � t flow,
whose combined length is minimum. Note that in undirected
graphs, any s� t flow can also be interpreted as a t� s flow.
It is well-known that this flow problem can be solved fairly

S+

s

t
G

. . .

. . .

w T+

Figure 3: By adding a super-source S+
, we can re-

duce the waypoint routing problem on undirected

graphs to a min cost flow problem: As a w� t flow is

also a t�w flow, we can check if there is a flow of size

2 from S+
to w. An analogous idea can be used to

reduce the waypoint routing problem to finding two

link-disjoint paths from S+
to T+

, later reversing the

blue path direction in the undirected case.

e�ciently: for a single source and a single destination, the
minimum cost integer flow can be solved in polynomial time
O((m logm)(m+ n log n)), cf. [17, p. 227].
But there exist even better solutions. We can leverage a

reduction to a problem concerned with the computation of
two (shortest) disjoint paths between the same endpoints s
and t. For this problem, there exists a well-known and fast
algorithm by Suurballe for node-disjoint paths [28]: it first
uses Dijkstra’s algorithm to find a first path, modifies the
graph links, and then runs Dijkstra’s algorithm a second
time. It was extended 10 years later to link-disjoint paths
by Suurballe and Tarjan [29]:

Theorem 1. On undirected graphs with non-negative link

weights, the shortest waypoint routing problem can be solved

for a single waypoint in time O(m log(1+m/n) n).

Proof. We will make use of Suurballe’s algorithm exten-
ded to the link-disjoint case [29] in our proof, which solves
the following problem in time O(m log(1+m/n) n): Given a
directed graph G = (V,E), find two link-disjoint paths from s
to t, with s, t 2 V , where their combined length is minimum.
To apply it to the undirected case, we can make use of a stan-
dard reduction from undirected graphs to directed graphs for
link-disjoint paths, replacing every undirected link with five
directed links [23], see Fig. 4, adjusting weights accordingly.

As the flow orientation is not relevant on undirected graphs,
we obtain a solution for finding two link-disjoint paths from s
to t on undirected graphs.

Note that the above applies to unit link capacities, which
we extend to larger link capacities as follows: We can apply
a standard reduction technique, creating two parallel undi-
rected links if the capacity su�ces. Observe that more than
two parallel links do not change the feasibility.
Now add a super-source S+ and a super-destination T+

u v u v

x

y

Figure 4: By replacing every undirected link with

the construction to the right, we can apply algo-

rithms for directed graphs to undirected graphs. Ob-

serve that in both cases, the integer flow possibilities

between u and v are identical.

ACM SIGCOMM Computer Communication Review Volume 48 Issue 1, January 2018

to the transformed directed graph, connecting S+ to s and t
with links of unit capacity, and T+ to w with two links of
unit capacity, see Fig. 3. To remove the parallel link property
from the graph, nodes are placed on all links, splitting them
into a path of length two, scaling path lengths by a factor
of two. In total, the number of nodes and links are still
in O(n) and O(m), respectively, allowing us to run Suur-
balle’s extended algorithm in O(m log(1+m/n) n). Lastly, by

removing S+, T+, translating the graph back to be undi-
rected, and scaling the path lengths back, we obtain an s�w
and a w � t path, whose combined length is minimum. If no
solution exist, Suurballe’s extended algorithm will notice it
during its execution.

Thus, we conclude that finding a shortest (s, w, t) walk is
significantly simpler than shortest two paths (s1, t1), (s2, t2).
Remark. One might wonder whether the above approach
can also be employed to e�ciently compute 2-disjoint paths
(s1, t1), (s2, t2), e.g., using a construction similar to the one
outlined in Figure 5. The problem with this idea is that s1
may be matched to t2 and s2 to t1. Indeed, the problem of
finding two disjoint paths from {s1, s2} to {t1, t2} where the
matching is subject to optimization, is significantly simpler
(and can be solved, e.g., using a flow algorithm).

2.2 Flow Size Changes Make it Hard
There are scenarios where waypoints increase or decrease

the bandwidth demand, e.g., the addition of an encapsulation
header will increase the packet sizes whereas a wide-area
network optimizer may compress the packets.

Theorem 2. On undirected graphs in which waypoints

are not flow-conserving, computing a route through a single

waypoint is NP-complete.

Proof. Reduction from the NP-complete 2-splittable flow
problem: Given an undirected graph G with link capacities,
are there two paths to route the flow from S+ to T+ s.t. the
flow is maximized? Koch and Spenke showed in [16] that
determining whether the maximum throughput is 2 or 3
in the 2-splittable flow problem is NP-hard on undirected
graphs with link capacities of 1 or 2.
Our reduction will be from the corresponding decision

problem, i.e., does a flow of size 3 exist? Assume for ease
of construction that s := S+ =: t and w := T+. As all
link capacities are either 1 or 2, we only need to check the
variants d0 2 {1, 2} , d1 2 {1, 2} of the capacitated waypoint
routing problem for feasibility. Therefore, if there was a
polynomial algorithm for the capacitated waypoint routing

S+

s1

s2

t1

t2

T+

Figure 5: Extending the idea of Figure 3 to two

link-disjoint paths can fail, as shown in this figure:

Instead of finding a S+, s1, t1, T
+, t2, s2, S

+
path (de-

picted in dotted red and blue), the output could be

to first visit t2 and then t1 second, never visiting t2
again after (depicted in solid red and blue).

problem on undirected graphs, we would also obtain a polyno-
mial algorithm for the initial problem. Lastly, the capacitated
waypoint routing problem is clearly in NP.

2.3 Directions Are Challenging As Well
But not only waypoints changing the flow sizes turn the

problem hard quickly: in a directed network, already the
problem of finding a feasible waypoint route is NP-hard, even
if waypoints are flow-conserving.

Theorem 3. On directed graphs, the waypoint routing

problem is NP-complete for a single waypoint.

Proof. Our proof is by a reduction from the NP-complete
2-link-disjoint paths problem [11]: Given 2 node pairs (s1, t1),
(s2, t2) in a directed graph G = (V,E), are there two link-
disjoint paths P1 = s1, . . . , t1, P2 = s2, . . . , t2?
We perform a reduction of all problem instances I of the

2-link-disjoint paths problem in graphs G to instances I 0 in
graphs G0 as follows: Create a (waypoint) node w, and add
the directed links (t1, w) and (w, s2), see Fig. 6.

To finish the construction of the waypoint routing problem
in I 0, set s := s1 and t := t2: Is there a route from s via w
to t, using every link only once?

If I is a yes-instance, I 0 is a yes-instance as well, by joining
the paths P1, P2 via the directed links (t1, w) and (w, s2).
Next, we show that if I is a no-instance, I 0 is a no-instance as
well: First, observe that to traverse w in G0 starting from s,
the only option is via traversing both links (t1, w) and (w, s2),
successively in that order. Thus, assume for the sake of
contradiction that I 0 is a yes-instance with a link-disjoint
walk W = s, . . . , t1, w, s2 . . . , t. Then, we can also create two
link-disjoint walks W1 = s1, . . . , t and W2 = s2, . . . , t2 in I by
removing both links (t1, w) and (w, s2) from W . Removing
the loops in W1 and W2 results in paths P1 and P2 solving I,
a contradiction.

2.4 Another Complexity: Distance Constraints
Another problem variant arises if we do not only want to

find a feasible (or shortest) path from s via w to t, but also
have hard constraints on the distance or stretch from s to
the waypoint, or from the waypoint to the destination.

Theorem 4. Finding a feasible path from s to t via w
subject to distance constraints between two consecutive nodes

from s, w, t is NP-complete on undirected graphs.

Proof. This follows by reduction due to the hardness
of finding 2 link-disjoint paths under a min max objective.
Li et al. [19] showed that given a graph G = (V,E) and
two nodes s0 and t0, the problem of finding two disjoint
paths from s0 to t0 such that the length of the longer path is

t1

w

s2G

Figure 6: By adding the waypoint w on a directed

path between t1 and s2, every feasible solution of the

waypoint routing problem must be a concatenation

of two walks s1, . . . , t1, w and w, s2, . . . , t2.

ACM SIGCOMM Computer Communication Review Volume 48 Issue 1, January 2018

minimized is NP-complete, even with unit link weights. This
implies that the waypoint routing problem is NP-complete
as well, by setting s = t = s0 and w = t0.

Recall that the directed case of a single waypoint was
already hard without distance constraints, see Theorem 3.
For comparison, note that in the absence of waypoints, upper
bounds on the route length are easy to maintain, by running
a shortest path algorithm on all links with su�cient capacity.
We note that Itai et al. [13] showed the two link-disjoint

path problem with distance constaints to be NP-complete
on directed acyclic graphs, using exponential link weights
(polynomial in binary representation) in their construction.
However, as we will see in Sec. 3.3, the distance constrai-
ned directed waypoint routing problem is polynomially time
solvable on DAGs, even for arbitrarily many waypoints.

3. ROUTING VIA MULTIPLE WAYPOINTS
The advent of more complex network services requires the

routing of tra�c through sequences of (multiple) waypoints.
Interestingly, and despite the numerous hardness results
derived for a single waypoint in the previous section, we will
see that it is still possible to derive some polynomial-time
algorithms even for multiple waypoints.
Note that the uncapacitated case can be optimally sol-

ved by existing shortest path algorithms such as Dijkstra’s
algorithm or all-pairs-shortest-path algorithms.

3.1 Possible For a Fixed Number of Waypoints
Interestingly, the k-waypoint routing problem is tractable

when the number of waypoints is constant:

Theorem 5. On undirected graphs, one can decide in

polynomial time O(m2) whether a feasible route through a

fixed number of waypoints exists.

Proof. The proof follows by application of [15], building
upon the seminal work of Robertson and Seymour [25]: for
any fixed k, the k-link-disjoint path problem can be decided in
polynomial-runtime of O(n2) on undirected graphs. We can
apply their result by asking for link-disjoint paths connecting
the waypoints in successive order. It only remains to set all
link capacities to one: To do so, we divide the links into
parallel links, their number bounded by k 2 O(1), even if
the capacity is higher. Then, we place a node on every link,
obtaining a graph with O(n+ km) 2 O(m) nodes.

3.2 Hard Already on Eulerian Graphs
While polynomial-time solutions exist for fixed k on general

graphs, we now show that for general k, the problem is
computationally intractable already on undirected Eulerian
graphs (graphs on which routing problems are often simple),
where all nodes have even degree.

Theorem 6. The waypoint routing problem is NP-complete

on undirected Eulerian graphs.

Proof. We briefly introduce some notations of the pro-
blem that we will use for the reduction, illustrated in Figure 7.
The link-disjoint path problem can also be formulated via a
supply graph G = (V,E), which supplies the links to route
the paths, and a demand graph H = (V,E(H)), whose links
imply between which nodes there is a demand for a path. I.e.,
{(s1, t1), . . . , (sk, tk)} = E(H). The union of both graphs is
defined as (V,E [E(H)).

v1 v2 v3 v4 v5

Figure 7: In this example, the supply graph G con-

sists of all nodes V and the links drawn in solid.

The demand graph H has the same node set V, but
its links H(E) contain two links from v2 to v4 and

three links from v1 to v5, drawn dotted. Note that

(V,E [E(H) is planar and Eulerian. Still, the link-

disjoint path problem given by G,H is not solvable

in this instance, e.g., only one path can be routed

from v1 to v5 via the solid links. If the demand graph

did not contain any parallel links, both paths could

be routed in a link-disjoint fashion.

We now reduce from the NP-complete problem of finding
link-disjoint paths where the union of the supply and the
demand graph is Eulerian [22]. Our polynomial reduction
construction of an instance I to an undirected graph G0 =
(V 0, E0) proceeds as follows: We first initialize V 0 = V
and E0 = E [E(H). Next, we add a new center node v
to G0, containing s, t. For simplicity, we will assume that v
also contains the k � 1 waypoints w4, w8, w12, . . . , w4(k�1);
those can also be moved to small cycles connected to v.
Next, for 1 i k, we define the remaining waypoints as
follows: w4i�3 = si, w4i�2 = ti, w4i�1 = si. We also add
two links between v and each si to E0, 1 i k. E.g., in
Figure 7, we add six links to v1 and four links to v2.
I.e., our waypoint problem is now an instance I 0: Start

in the center node v, go to s1, then to t1, back to s1, then
to v; then proceed similarly for s2 . . . , to sk, and ending
at v. We note that new graph is still Eulerian. Again, in the
same spirit as before, we can split the corresponding demand
links, possibly twice, moving waypoints there, preserving the
Eulerian property, the restriction of one waypoint per node,
and removing all parallel links. NP-completeness now follows
directly via case distinctions.

3.3 Possible on Trees and DAGs
Tree networks. On tree networks, paths between two given
nodes are unique, and finding shortest walks hence trivial:
simply compute a shortest path for each path segment (recall:
a simple path), one-by-one. If this walk is feasible, it is
optimal; if not, no solution exists. Note that this also holds
if waypoints change the flow rate, and for directed graphs,
when the underlying undirected graph is a tree.

Observation 2. The shortest waypoint routing problem

with demand changes is polynomial on trees and DAGs.

DAGs. A similar results still holds on Directed Acyclic
Graphs (DAGs). When making a choice for the path to the
next waypoint, we can use a simple greedy algorithm: any
link that we use will never be used for a later path (due to
the acyclic property). Hence, we can also minimize distance
constraints for DAGs (and, trivially on trees). In comparison,
the link-disjoint path problem is polynomialy solvable for
a fixed number of link-disjoint paths on DAGs [11], but
NP-complete in general already on planar DAGs [30].

ACM SIGCOMM Computer Communication Review Volume 48 Issue 1, January 2018

Observation 3. There are graph families for which the

waypoint routing problem can be solved e�ciently while the

disjoint paths problem cannot.

4. OTHER RELATED WORK
In this paper, we focus on the allocation of a single walk,

without violating capacity constraints. Our work hence dif-
fers from existing literature on approximation algorithms
for (admitting and) allocating multiple walks which allow
for (sometimes significant) capacity violation, e.g., based on
randomized rounding [7, 8, 21, 26]. Existing literature on ap-
proximation algorithms usually also considers the placement
of waypoints [20] and sometimes also considers more general
requests, which are not limited to paths through waypoints
but which may for example also come in the form of trees [2,
8, 26]. Moreover, while we in this work focused on walks
through ordered waypoints, there is work on routing through
unordered waypoints [1] and on symmetric digraphs [10].
There is no obvious way to apply algorithms designed for the
unordered problem variant to the ordered case.

5. CONCLUSION
We hope that our paper can provide the network com-

munity with algorithmic techniques but also inform about
complexity bounds. In future research, it would be interes-
ting to study a generalization to practically relevant scenarios
in which waypoint placement is also subject to optimization
or in which waypoints may be replicated for load balancing
purposes. Moreover, more research is required on how to ex-
tend existing e�cient tra�c engineering heuristics to account
for waypoint requirements.
Acknowledgments. We thank Thore Husfeldt for inputs.
Research supported by the Villum project ReNet and Aalborg
University’s PreLytics project. Saeed Amiri’s research was
partly supported by the European Research Council (ERC)
grant agreement No 648527.

6. REFERENCES
[1] S. Akhoondian Amiri, K.-T. Foerster, and S. Schmid.

Walking Through Waypoints. In Proc. LATIN, 2018.
[2] N. Bansal, K.-W. Lee, V. Nagarajan, and M. Zafer.

Minimum congestion mapping in a cloud. In Proc.

ACM PODC, 2011.
[3] A. Björklund, T. Husfeld, and N. Taslaman. Shortest

cycle through specified elements. In Proc. SODA, 2012.
[4] A. Björklund and T. Husfeldt. Shortest two disjoint

paths in polynomial time. In Proc. ICALP, 2014.
[5] M. Cygan, D. Marx, M. Pilipczuk, and M. Pilipczuk.

The planar directed k-vertex-disjoint paths problem is
fixed-parameter tractable. In Proc. FOCS, 2013.

[6] ETSI. Network functions virtualisation – introductory
white paper. White Paper, oct 2013.

[7] G. Even, M. Medina, and B. Patt-Shamir. Online path
computation and function placement in sdns. In Proc.

SSS, 2016.
[8] G. Even, M. Rost, and S. Schmid. An approximation

algorithm for path computation and function placement
in SDNs. In SIROCCO, 2016.

[9] C. Filsfils, N. K. Nainar, C. Pignataro, J. C. Cardona,
and P. Francois. The segment routing architecture. In
Proc. GLOBECOM, 2015.

[10] K.-T. Foerster, M. Parham, and S. Schmid. A walk in
the clouds: Routing through vnfs on bidirected
networks. In Proc. ALGOCLOUD, 2017.

[11] S. Fortune, J. E. Hopcroft, and J. Wyllie. The directed
subgraph homeomorphism problem. Theor. Comput.

Sci., 10:111–121, 1980.
[12] R. Hartert, S. Vissicchio, P. Schaus, O. Bonaventure,

C. Filsfils, T. Telkamp, and P. Francois. A declarative
and expressive approach to control forwarding paths in
carrier-grade networks. In Proc. SIGCOMM, 2015.

[13] A. Itai, Y. Perl, and Y. Shiloach. The complexity of
finding maximum disjoint paths with length constraints.
Networks, 12(3):277–286, 1982.

[14] J. Sherry et al. Making middleboxes someone else’s
problem: Network processing as a cloud service. In
Proc. ACM SIGCOMM, 2012.

[15] K. Kawarabayashi, Y. Kobayashi, and B. A. Reed. The
disjoint paths problem in quadratic time. J. Comb.

Theory, Ser. B, 102(2):424–435, 2012.
[16] R. Koch and I. Spenke. Complexity and

approximability of k-splittable flows. Theoretical
Computer Science, 369(1):338 – 347, 2006.

[17] B. Korte and J. Vygen. Combinatorial optimization.
Springer, 2012.

[18] D. Levin, M. Canini, S. Schmid, F. Scha↵ert, and
A. Feldmann. Panopticon: Reaping the benefits of
incremental SDN deployment in enterprise networks. In
Proc. USENIX ATC, 2014.

[19] C.-L. Li, S. T. McCormick, and D. Simchi-Levi. The
complexity of finding two disjoint paths with min-max
objective function. Discrete Applied Mathematics,
26(1):105–115, 1990.

[20] T. Lukovszki, M. Rost, and S. Schmid. It’s a match!
near-optimal and incremental middlebox deployment.
ACM SIGCOMM Computer Communication Review

(CCR), 46(1):30–36, 2016.
[21] T. Lukovszki and S. Schmid. Online admission control

and embedding of service chains. In SIROCCO, 2015.
[22] D. Marx. Eulerian disjoint paths problem in grid

graphs is NP-complete. Discrete Applied Mathematics,
143(1-3):336–341, 2004.

[23] G. Naves and A. Sebö. Multiflow feasibility: An
annotated tableau. In W. J. Cook, L. Lovász, and
J. Vygen, editors, Research Trends in Combinatorial

Optimization, pages 261–283. Springer, 2008.
[24] R. Soulé et al. Merlin: A language for provisioning

network resources. In Proc. ACM CoNEXT, 2014.
[25] N. Robertson and P. D. Seymour. Graph Minors .XIII.

The Disjoint Paths Problem. J. Comb. Theory, Ser. B,
63(1):65–110, 1995.

[26] M. Rost and S. Schmid. Service chain and virtual
network embeddings: Approximations using
randomized rounding. arXiv preprint, 2016.

[27] P. D. Seymour. Disjoint paths in graphs. Discrete

Mathematics, 29(3):293–309, 1980.
[28] J. W. Suurballe. Disjoint paths in a network. Networks,

4(2):125–145, 1974.
[29] J. W. Suurballe and R. E. Tarjan. A quick method for

finding shortest pairs of disjoint paths. Networks,
14(2):325–336, 1984.

[30] J. Vygen. NP-completeness of some edge-disjoint paths
problems. Discrete Applied Mathematics, 1995.

ACM SIGCOMM Computer Communication Review Volume 48 Issue 1, January 2018

	Introduction
	The Motivation: Service Chaining andSegment Routing
	The Problem: Waypoint Routing
	The Twist: It's a walk!
	Our Contributions
	Paper Organization

	Routing Via A Waypoint
	Undirected Graphs Are Tractable
	Flow Size Changes Make it Hard
	Directions Are Challenging As Well
	Another Complexity: Distance Constraints

	Routing Via Multiple Waypoints
	Possible For a Fixed Number of Waypoints
	Hard Already on Eulerian Graphs
	Possible on Trees and DAGs

	Other Related Work
	Conclusion
	References

