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ABSTRACT

We are moving towards an Internet where most of the pack-
ets may be consumed by machines – set-top-boxes or smart-
phone apps prefetching content, Internet of Things (IoT)
devices uploading their data to the cloud, or data centers
doing geo-distributed replication. We observe that such ma-
chine centric communication can a↵ord to have slack built
into it: every packet can be marked as to when it will be
consumed in future. Slack could be anywhere from seconds
to hours or even days. In this paper, we make a case for
slack-aware networking by illustrating slack opportunities
that arise for a wide range of applications as they interact
with the cloud and its pricing models (e.g., spot pricing). We
also sketch the design of SlackStack , a network stack with
explicit support for slack at multiple levels of the stack, from
a slack-based interface to slack-aware optimizations at the
transport and network layers.
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1. INTRODUCTION

Today’s Internet is centered around human-centric com-
munication: there is a waiting user behind every communi-
cation (e.g., web request) and the network tries to deliver
the packets as soon as possible. In future, it is possible that
most of the packets will be consumed by machines – set-top-
boxes or smart-phone apps pre-fetching content, Internet of
Things (IoT) devices uploading their data to the cloud, or
data centers (DC) doing geo-distributed replication.

We posit that such machine centric communication can
a↵ord to have slack built into it: every packet can be marked
as to when it will be consumed in future. Slack could be
anywhere from seconds to hours or even days. For example,
a social network application prefetching photos may have a
slack of seconds or minutes; an IoT device uploading data to
the cloud may have a slack of few minutes to hours; and a
set-top box prefetching videos for o✏ine viewing may even
have a slack of few days.

Information about slack allows the network to do slack-
aware networking : the network can reduce cost of trans-
ferring data by scheduling data transmissions at non-peak
times [23, 29], or by compressing, batching, and multicas-
ting data, as packets need not be sent immediately. The

network can also use di↵erent power saving modes, with en-
ergy savings even for slack as small as tens of millisconds
or seconds [16, 31]. From a user’s perspective, slack-aware
networking can reduce cost of network transfers, which fa-
cilitates aggressive prefetching of content, thus leading to
potential improvement in performance and availability.

While past work has shown the benefits of slack-aware
networking in limited settings [29,31,37], what makes slack-
aware networking particularly attractive now is the emer-
gence of the cloud. Most popular applications have a foot-
print in the cloud, so we can realize benefits of slack-aware
networking without requiring any explicit support from ISPs.
More importantly, the cloud o↵ers a range of performance
vs. cost options, which are amenable to slack-aware net-
working. For example, cloud usage cost could vary 2-37x
across time (e.g., due to variation in spot pricing) and space
(e.g., due to variable costs across DC locations) [1, 3]. The
spatial slack is synergistic with temporal slack: the tem-
poral slack gives us (spatial) flexibility in choosing which
cloud to use as an end-point or for in-network services (e.g.,
a far-away but cheaper DC) while the new spatial options
can decouple end-points through use of in-network storage,
which could in turn create new opportunities for temporal
slack (e.g., transferring data during o↵-peak times).

Unfortunately, today’s TCP/IP network stack is ill-suited
to exploit these opportunities. From a low level application-
network interface (socket API) to a synchronous communi-
cation model (TCP) and use of locations as addresses (IP),
today’s TCP/IP stack lacks support to fully exploit the spa-
tial and temporal slack opportunities. On the other extreme
are disruption tolerant networks (DTNs) [18] that deal with
arbitrary disruptions: they do not optimize for slack in“well-
connected”networks like the Internet. We, therefore, call for
a new network stack with explicit support for slack, a net-
work stack that allows applications to seamlessly move from
an interactive mode (no slack) to regimes where slack could
be anywhere from milliseconds to hours or days.

As a first step in this direction, we propose SlackStack ,
a network stack with support for slack at multiple levels of
the system – from the application level, in the form of new
APIs, to slack-aware mechanisms at the transport and net-
work layers. SlackStack exposes slack information – both
temporal and spatial – throughout the network stack, and
uses the mailbox abstraction to allow producers and con-
sumers to e↵ectively control the slack optimizations as per
their requirements. The idea of a mailbox is inspired by the
postal system – like physical mailboxes, a SlackStack mail-
box decouples the producer and consumer using in-network
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storage. This decoupling occurs at multiple levels and target
di↵erent goals: privacy and insertion of services at the end-
to-end (transport) level vs. higher throughput and lower
energy consumption at the per-hop (router) level. These
di↵erences lead to di↵erent storage implementations for the
mailboxes: globally visible, cloud-based mailboxes at the
transport level, and temporary memory regions at the per-
hop (router) level.

In the remainder of this paper, we elaborate on our case for
slack-aware networking (§2), present the sketch of SlackStack
and how it leads to rich opportunities at multiple levels of
the network stack (§3), and, finally, how our proposal builds
upon, and relates to, a large body of prior work (§4).

2. A CASE FOR SLACK-AWARE NETWORK-

ING

Slack-Aware Applications. We discuss four broad classes
of applications that can benefit from slack-aware networking.

1. Video-on-Demand (VoD) can consume more than 50% of
Internet bandwidth at peak times [4]; most of this traf-
fic is not for live content, so it can potentially benefit
from slack-aware networking. Many services already o↵er
o✏ine viewing, with some providing users with explicit
control over when they want to watch a video (e.g., Play-
Later [7]) while others try to actively prefetch videos that
the user is likely to watch in future [2]. The slack time
of VoD could thus vary from zero (real-time) to hours or
even days.

2. Social networking applications like Facebook have a huge
user base. We posit that several features of these ap-
plications (e.g., photo sharing) can benefit from slack-
awareness in two ways. First, when a content is pub-
lished, the user may be o✏ine (e.g., she may be sleep-
ing), so the content could be transferred in a slack-aware
fashion to her device. Second, even if the user is online,
adding a little slack (e.g., on the order of few seconds)
to when the data is made visible to the user may not be
noticeable.

3. IoT applications can upload huge amounts of data to the
cloud and their slack requirements could vary from real-
time to minutes or hours. For example, home monitor-
ing cameras (e.g., Nest [6]) stream data to the cloud for
archival storage but also allow real-time monitoring. For
such applications, the slack value could vary depending
on whether the user is actively watching the video feed,
or any activity in the video has been detected or not.1

4. Inter-Data Center Replication. For performance, avail-
ability, and fault-tolerance, many cloud applications repli-
cate data across multiple DCs [34]. The slack value for
replicated tra�c could vary significantly, depending on
the application requirements (e.g., whether the replica-
tion is on the critical path of user requests or not).

These slack-aware applications also rely heavily on the
the cloud – they either run inside the cloud or can gain
additional benefits with the help of cloud services [21,22].

Cloud Pricing Models. We analyze the cost o↵erings of
the three major cloud providers (Amazon, Microsoft, and

1These devices typically run computer vision algorithms on
the device (often supplemented by additional computation
in the cloud) to detect activities in the scene.

Google) and observe significant price variation in both the
spatial (across DCs or resources) and temporal dimensions.
For example, for di↵erent DC locations in Amazon, the com-
pute and network costs could be 1.6x to 2.7x higher com-
pared to the locations in US while the regular instances could
be up to 37x more expensive compared to the cheapest spot
price instance of the same type. Microsoft and Google have
similar price di↵erentials: Microsoft’s compute and network
costs could vary by 1.5x to 2x respectively across DC loca-
tions while Google’s compute and network costs could vary
by 1.4x and 1.9x, respectively. While Microsoft doesn’t o↵er
any spot pricing, Google o↵ers preemptable virtual machines
(VM) that o↵er up to 70% discount over normal VMs [5].

Potential Gains. Based on the above four applications,
we pick four specific scenarios to highlight potential ben-
efits of slack-aware networking when it is used in today’s
cloud-based world. We broadly put all these scenarios un-
der machine-centric communication as data is retrieved by
machines or smartphone “apps” working on behalf of users.

Prefetching Photos. Alice opens the photo album of her
friend. As she views the first photo, her social networking
app decides to prefetch the subsequent photos, requesting
them with a slack of few seconds. Normally, the network
downloads the photos from the nearest DC, but for pho-
tos with slack, it can download them from a far-away but
cheaper DC. If most of the requests could be served from
the cheaper DC, it could significantly reduce the cost for
the application provider.

Home Video Surveillance. For this scenario, slack-aware
networking can help in three ways. First, slack-aware schedul-
ing could allow video surveillance to co-exist well with other
home tra�c (e.g., web browsing). Second, it can reduce
the infrastructure requirement of processing and storing the
video feeds inside the cloud: data with slack can be batched
and processed using a slower VM, in an energy e�cient man-
ner, and using a cheaper (but slower) storage option. Third,
user app can decide to consume a subset of the total data, by
specifying a time range or other criterion to filter, thereby
reducing its download tra�c with the help of the network.

Overnight Backup. Consider a bulk overnight backup trans-
fer from a DC in Asia to a DC in US. Slack-aware network-
ing can reduce cost of transferring data by exploiting lower
prices that are available during the slack interval – either
because of spot-pricing or 95th percentile pricing used by
ISPs [3, 29]. To transfer data, we can wait for a time when
the cost is lower for both DCs or in some cases it may make
sense to even use an intermediate DC (e.g., a DC in Europe)
as a store-and-forward point.

Slack-aware VoD. Consider an app that shows the user
recommendation on new movies along with multiple options
to download – options with slack being cheaper compared
to the option of downloading immediately. Suppose the user
decides to watch the movie after few hours, but during this
time she visits her friend and decides to watch the movie
at her friend’s home. As the data may be in “transit”, the
slack-aware network can provide user with the updated cost
to reroute the transfer to her friend’s mailbox, which will
likely be lower than downloading the movie twice. While
this scenario can also reap the benefits of the previous sce-
narios, it highlights: i) network impacting user behavior by
giving slack-based options and ii) user changing her transfer
options based on new preferences – a flexibility lacking in
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today’s Internet because data is transferred immediately.

Requirements. The above scenarios help us identify four
key application requirements for slack-aware networking.

1. Network should expose slack trade-o↵s to the user/application.
Exposing the di↵erent slack options and the cost associ-
ated with them may impact application/user choices be-
cause there is an inherent flexibility in many of these ap-
plications (e.g., VoD scenario). This has implication on
the human-machine interface as well as the application-
network interface.

2. Supporting a wide range of slack times. The amount of
slackness applications can tolerate may vary significantly,
both across applications, as well as within an application.
Applications should, therefore, have fine-grained control
over setting a slack value for their network transfers. Sim-
ilarly, the network stack should have mechanisms to deal
with a wide range of slack values, exploiting opportuni-
ties created by slack in the time dimension (i.e., when
transfers happen) and the space dimension (i.e., which
DC is used as an end-point or an intermediary).

3. Slack times may change during transfers. This has im-
plication on both the interface as well as the underlying
slack-aware mechanisms. The network should have con-
trols for changing the slack value dynamically based on
changed circumstances.

4. Respecting Existing and New Tussles. Supporting the
above slack optimizations will bring forth existing tus-
sles as well as create new ones [11]. For example, it may
entail requiring information that the end-points may not
be willing to share with each other or with the network.
For users, this could be their location or the devices they
are going to use during the slack time while for the appli-
cation providers it could be the spatial options for data
delivery, such as the intermediate DC locations and their
costs. The stack should provide suitable controls and
trade-o↵s that could gracefully handle these tussles.

3. SLACKSTACK

3.1 Overview

We present the Slack-Aware Network Stack (SlackStack),
which combines the concept of slack with well-known archi-
tectural building blocks to enable a wide range of slack-based
optimizations. In SlackStack , the entire stack is aware of the
slack options, both temporal and spatial, and this informa-
tion is pushed down from the application to lower layers, in
both the vertical (across layers) and horizontal (across roles)
directions.

Mailboxes. Inspired by the postal system, SlackStack uses
mailboxes which leverage in-network storage to decouple
the producer and consumer. They support two operations:
push, which enables the producer to control slack-based op-
timizations, from the source of the data to the mailbox, and
a pull operation which puts the consumer in-charge of the
optimizations, from the mailbox to the consumer device.
Most existing architectures either support a pull mode (e.g.,
CCN [18]) or a push mode (e.g., DTN [18]), but SlackStack
uses both in order to provide mechanisms to deal with the
increased “tussles” expected in a slack-based Internet.

Mailboxes have di↵erent realizations at di↵erent levels of
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Figure 1: SlackStack example showing a consumer getting
data from a publisher through mailboxes.

the stack based on the relevant concerns: privacy and inser-
tion of services at the end-to-end level vs. higher throughput
and lower energy consumption at the per-hop (router) level.
These di↵erences lead to di↵erent storage abstractions for
the mailboxes: at the end-to-end level, we have globally vis-
ible, mailboxes with persistent storage that can be hosted
in the cloud (or cloudlets [32]) and are named using self-
certifying identifiers (MID) [9,20]; at the router level, we can
have temporary memory regions, where neighboring routers
in a cluster can directly write packets to, without involving
the host processor (e.g., using RDMA [17,26]).

Building Blocks. SlackStack leverages three other impor-
tant building blocks. First, TCP’s synchronous commu-
nication model and end-to-end semantics are limiting, so
SlackStack requires a hop-by-hop transport (e.g., Tapa [15])
which decouples the end-points using in-network storage,
while also supporting flexible application semantics (e.g.,
end-to-end vs. per-hop acknowledgements). Second, Slack-
Stack uses a pub/sub API [19] between the application and
the network, based on push() and pull(). Third, Slack-
Stack uses application data unit (ADU) [10] as the data
granularity – ADU could be defined in a flexible manner
by the application – as an application chunk or the entire
file (e.g., photo). The use of ADUs and a pub/sub API pro-
vides a much higher level of abstraction compared to today’s
socket-based API, which simplifies the use of slack-aware op-
timizations.

End-to-End Transfer. Figure 1 shows an example of how
data is transferred between the producer and the consumer
using one or more mailboxes. In this example, the consumer
mailbox is hosted in a cloud close to the user; data is pushed
to this mailbox by the producer, and later pulled by the
consumer. We present SlackStack as an overlay on top of
today’s Internet, but most of the optimizations apply even
if SlackStack is deployed as a native architecture.
Push Phase. The producer application uses a push() call to
write data to its own mailbox. Transport figures out which
consumer mailbox(es) the data needs to go based on prior
registrations. The MID of the consumer mailbox is resolved
to a network address using a key-value based, global name
resolution service (e.g., Auspices [33]). Given the destina-
tion, slack value, and information about the network graph
(in-network storage, costs, etc), the routing module com-
putes a route (i.e., which intermediate mailboxes should be
used) and schedule (i.e., when should they transfer data).
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Subsequent mailboxes may update the schedule depending
on new information (e.g., changes in MID resolution or net-
work costs).

On the forwarding plane, SlackStack uses hop-by-hop re-
liable transfers to push the data to the mailbox. While we
focus on a store-and-forward transfer model in this paper,
SlackStack can also support a cut-through transfer mode,
in order to speed up transfers at the cost of limiting the
use of in-network services that operate on complete ADUs
(e.g., virus scanners). Our software router based forward-
ing will allow routers (and middleboxes) in a cluster/DC
to write directly to specific memory regions of their neigh-
bors based on the slack-value of the data – using help from
neighbor’s dedicated packet reception processor or through
interconnects like RDMA [26]. Data is finally stored in the
consumer mailbox and a delivery notification is sent to the
consumer transport.
Pull Phase and Advance Mailbox Services. Consumer makes
a pull() call to retrieve data from its mailbox. The pull
phase puts the onus of getting the data on the consumer
(similar to CCN [25]); it could get the data at any time,
on any device, using a transport mechanism that is opti-
mized for the particular scenario. Consumer may want to
retrieve di↵erent data compared to what the producer orig-
inally sent, as user preferences may have changed during
the slack time. SlackStack supports a query interface with
the pull() mode that allows filtering of ADUs based on a
query, and allows in-network services (e.g., transcoding) to
be added on-the-fly in the forwarding path through dynamic
MID resolution. The resolution service returns a stack of
MIDs to support indirection (similar to i3 [35]) but the res-
olution can be updated at every hop (similar to DTN [18]).
This id resolution can also be context specific (e.g., di↵erent
return value based on who is resolving) [33].

We now discuss the key challenges and opportunities at
di↵erent levels of SlackStack .

3.2 Slack-Aware Interface

Our pub/sub API provides a high level abstraction for
data transfers. The API should also support a number of
other requirements: it should be bidirectional, allowing not
only the applications to set the slack value but also enabling
the network to provide a set of slack vs. cost tradeo↵s to
the application (similar to the VoD scenario). It should
also support adaptability as slack preferences may change,
and should also provide suitable controls for specifying slack,
privacy, and data sharing requirements.

We propose the use of a directed-acyclic graph (DAG) to
express the communication requirements between the appli-
cation and the network. A DAG can capture the spatial
(cloud replicas) and temporal (pricing options) dimensions
of slack-based communication. End-points and mailboxes
can be represented as nodes in the DAG while edges will
correspond to the flow of information. For each operation,
the application can specify exact mailbox to be used or can
let the network choose the specific replica while still meet-
ing the slack requirements. The application also specifies
the slack requirement, replication semantics (e.g., strict vs.
eventual consistency), and privacy requirements that should
be met.

By leveraging slack and consistency requirements, Slack-
Stack can decide which mailbox(es) to use while minimizing
the cost. For example, it could decide to write to the mailbox

in the cheapest DC and return to the application, if eventual
consistency is required. Similarly, applications can specify
privacy/security requirements, including permissions for in-
network services to operate on encrypted ADUs [14,15,30].

While prior proposals (e.g., XIA [8, 20], RANS [24], etc)
also use a DAG, the main challenge in SlackStack will be
to support a simple, yet expressive interface, that can be
used for specifying mailboxes and their semantics, along
with slack and privacy/sharing requirements.

A DAG will also be used in the opposite direction, from
the network to the application, to convey di↵erent transfer
options to the application. One possible way to expose these
options is using the concept of a marketplace [39], where
slack options will be advertised as di↵erent services, and
represented in the DAG with their appropriate cost and per-
formance. The application may need to provide some hints
with regards to acceptable slack range or budget, so the
network can focus on providing only feasible options. After
getting the options, the application can choose its desired
option, and use the marketplace for payment and account-
ability [39].

3.3 Slack-Aware Transport Services

The basic service provided by SlackStack transport is re-
liable data delivery to a mailbox (push mode) and from a
mailbox to the consumer (pull mode), using a reliable hop-
by-hop transport protocol (e.g., [12, 13, 15, 18]). For the
mailbox, we need to investigate how we can use di↵erent
cloud storage options that have di↵erent cost vs. perfor-
mance trade-o↵s. For example, Amazon’s S3 can be half
the price of EBS if the reads and writes are done on larger
blocks, but has an order of magnitude higher latency, which
means that data should be aggregated and data transfers
should be carefully “staged” to meet the slack requirements.

Dynamic Insertion of Transport Services. The po-
tentially large slack time for data transfer means that the
requirements of the transfer may change, thus requiring on-
the-fly transport services. To meet the requirements of such
dynamic scenarios, we consider two complementary tech-
niques: a query interface for mailboxes, and insertion of
transport services (e.g., transcoding) while data is in-flight.

The query interface extends the pull() mechanism, en-
abling consumers to query the mailbox and retrieve a sub-
set of ADUs, or even modified ADUs, based on the require-
ments. We can consider a simple SQL like interface, with ini-
tial support for SELECT, FROM, and WHERE clauses. Consumers
will be able to search for specific ADUs that meet certain
criterion (e.g., produced in the last 1 min), retrieve certain
fields from structured ADUs (e.g., IoT data), and also search
across shared mailboxes of other users (e.g., search for an
ADU in a friend’s shared mailbox).

To support insertion of services in a dynamic fashion, we
can combine two well known concepts: stack of identifiers
to e↵ectively chain multiple services [35, 38] and late bind-
ing [18] to ensure that the service identifiers are resolved
repeatedly to identify any updates. So the MID will be
resolved to a stack of identifiers corresponding to the vari-
ous in-network services that need to be used (at that time).
We can potentially associate a lease (timeout value) with
this mapping so the network makes sure to resolve the MID
again after the lease expires. Further, this name resolution
could also be context dependent – for example, return a dif-
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Figure 2: Energy Saving Example. All nodes need to synchronize in a), but use of storage in b) decouples them. Use of
RDMA in c) allows R3 to do all the work via remote reads and write.

ferent stack based on who is querying (trusted vs. untrusted
entities) or at what time the query is being made (depending
on how much slack is left). The above proposal synthesizes
known concepts, but moves the complexity to the resolution
service.

3.4 Slack-Aware Forwarding

Slack-aware packet forwarding can leverage the well-understood
benefits of batching and can use slack-awareness while schedul-
ing packets. Here, we highlight the potential for energy
savings because of slack. Most prior proposals on energy
savings are limited by the constraint that both end-points
of a link need to be active simultaneously in order to trans-
mit a packet [31]. Fig. 2a shows a simple example involving
four nodes: routers R1 and R1 want to send packets to R4
through R3. In this scenario, all four nodes need to be up at
the same time and synchronize their communication (shown
by having the same type of arrow), in order to potentially
use any sleep modes for energy saving. As noted by Ned-
veshchi et al. [31], such synchronizing becomes complex as
the size of the network grows, and as we consider realistic
tra�c patterns.

Using slack information, we can decouple the sender and
receiver with the help of in-network storage: a sender can
write to the memory of its neighbor who can process the
data at a later time (when it wakes up). Fig. 2b shows how
the transfers can happen at di↵erent times (indicated by
di↵erent types of arrows). All nodes need not be up at the
same time – each node can have its own schedule for sleep-
ing/waking up as long as it obeys the slack requirement of
the packets. The example assumes that it is possible to write
directly to the memory of your neighbor. We can consider
two options in this regard, both targeted towards edge clus-
ters or small scale DCs, which use software middleboxes and
routers. First, we can dedicate a core for packet processing
which receives incoming packets and stores them in suitable
memory regions; other processors wake up based on their
schedule and process data from their memory. The second
option is based on RDMA-based interconnects which allow
direct read and write to remote memory without involving
the remote processor [17,26].

Fig. 2c shows how RDMA can be leveraged for additional
energy savings. The router in the middle (R3) can allow
everyone else to sleep: it can do a remote read from the
memories of the senders (without involving their processors)
and then subsequently do a remote write to the memory of
the destination. So any router that wakes-up ensures that
it does both a read and a write, allowing every two (out of
three) routers to potentially sleep all the time.

3.5 Slack-Aware Routing

We consider the slack-aware routing problem in the con-
text of a cloud provider transferring data from one DC to

another. We can formulate this as a least-cost routing prob-
lem on a graph where a vertex represents some resource
(e.g., storage, compute) and the edges carry the delay and
cost associated with transferring data from one resource to
the other.

A first challenge is capturing the temporal aspect of the
problem. We need to capture the flexibility o↵ered by slack:
data could wait at a resource and only move when the cost is
lower. Similar to NetStitcher [29], we can do a time expan-
sion of the cost/delay graph, although they only consider
a limited number of time periods (peak vs. o↵peak) which
allows them to compute the optimal solution even though
this is an NP-hard problem. In our case, we will need to
use heuristics such as: pruning infeasible slack options or
removing those nodes with a small change in price, to re-
duce the size of the graph and possibly solve the problem in
a multistage fashion.

A second issue is putting suitable cost/delay weights for
future times because this information may not be known,
especially if a spot pricing model is being used for di↵erent
cloud resources. To address this challenge, we can use fore-
casts based on applying standard statistical techniques on
historical data, and report confidence intervals, in order to
capture the uncertainty in our forecasts.

4. OUR WORK IN CONTEXT

Table 1 shows how the building blocks used in Slack-
Stack are inspired by prior proposals, including DTNs [18],
content and data-centric architectures (e.g., CCN [25, 28],
DOT [36]), pub-sub systems (e.g., PURSUIT [19]), future
Internet architectures (e.g., XIA [20]), indirection-based pro-
posals [35, 38] (e.g., i3 [35]), slack-based scheduling (e.g.,
NetStitcher [27], Calendaring [27]) and segment-based trans-
ports (e.g., Tapa [15]). SlackStack synthesizes these con-
cepts and uses them in a novel way for slack-aware network-
ing. For example, SlackStack uses both push and pull modes
while existing systems mostly use either a push mode (e.g.,
DTN [18]) or a pull mode (e.g., CCN [25]), but not both.
Similarly, while DTN and CCN make use of in-network stor-
age, SlackStack uses it in a novel way: in-network storage
can be addressed (using MIDs) and services can be added
on-the-fly while data is in transit. In addition, the two new
concepts in SlackStack , which most prior proposals lack, are:
i) use of slack as an opportunity rather than a constraint (as
in DTNs), so if the network is connected, DTNs will im-
mediately deliver the data, anticipating disconnections in
the future, while SlackStack may potentially wait to opti-
mize for slack, and ii) consideration of cost vs. performance
trade-o↵s present in cloud settings, which open unique slack
opportunities in both time and space. These di↵erences lead
to opportunities and challenges that form the basis of the
rich research program that we presented in this paper.
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DTN i3 CCN XIA
Pub-Sub

(PURSUIT)
NetSticher Calendaring DOT Tapa SlackStack

In-network Storage X X X Limited X X Limited X
Push Mode X X X X X X X X X
Pull Mode X X X X
Indirection X X X X X X
Slack X X Limited X
Cloud Tradeo↵s X

Table 1: Comparison of SlackStack with other relevant proposals.

5. CONCLUSION

We argue that slack-based optimizations will become in-
creasingly more important in future. Our proposal, Slack-
Stack , should be viewed as a first step towards understand-
ing how the network stack can be revamped to support slack-
aware optimizations. We believe that SlackStack can signif-
icantly benefit and evolve from a broad range of community
feedback and involvement as it extensively uses well-known
building blocks, both from seminal proposals as well as re-
cent e↵orts on future Internet architectures, and raises ques-
tions that span the entire network stack.
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