
NDN Host Model
Haitao Zhang

University of California, Los Angeles
haitao@cs.ucla.edu

Yanbiao Li
University of California, Los Angeles

lybmath@cs.ucla.edu

Zhiyi Zhang
University of California, Los Angeles

zhiyi@cs.ucla.edu

Alexander Afanasyev
Florida International University

aa@cs.fiu.edu

Lixia Zhang
University of California, Los Angeles

lixia@cs.ucla.edu

This article is an editorial note submitted to CCR. It has NOT been peer reviewed.
The authors take full responsibility for this article’s technical content. Comments can be posted through CCR Online.

ABSTRACT
As a proposed Internet architecture, NamedDataNetworking (NDN)
changes the network communicationmodel from delivering packets
to destinations identified by IP addresses to fetching data packets by
names. This architectural change leads to changes of host functions
and initial configurations. In this paper we present an overview of
the basic functions of a host in an NDN network, together with nec-
essary operations to configure an NDN host. We also compare and
contrast the functionality and configuration between an NDN host
and an IP host, to show the differences resulted from the different
architecture designs.

CCS CONCEPTS
• Networks→ End nodes; Network manageability;

KEYWORDS
NDN, host function, host configuration

1 INTRODUCTION
The concept and properties of a network host are well-understood
with respect to today’s Internet architecture [1]. It is a physical or
virtual device that runs applications. Hosts are provisioned, either
manually or via automated protocols, with IP addresses, forwarding
configurations, DNS server settings, and other parameters. A host
encapsulates and sends application data to destinations identified
by IP addresses. Generally speaking, the network setting of an IP
host (either an IPv4 host or an IPv6 host) is transparent to appli-
cations, but with a few exceptions. For example, whenever a host
moves to another network, it needs to be re-provisioned with the
parameters associated with the new location, which may require
dynamic updates to DNS-IP address mapping, or potentially impact
the applications running on the host (e.g., breaking the existing
TCP connections).

In NamedData Networking (NDN) [2–4], a proposed data-centric
network architecture, the concept of a network host still applies:
it is a node running applications. However, due to the change to
the communication model, an NDN host differs from an IP host in
some fundamental ways regarding the parameters to be configured
and their impact on applications. In particular, NDN application
and network layers share the same namespace. The hierarchically
structured names assigned to data by applications are used by NDN

forwarders to direct requests toward data and by the hosts to demul-
tiplex the requests to the right application process. Moreover, NDN
requires all Data packets to be properly signed; therefore all the
hosts and applications running on them need to be configured with
cryptographic keys and certificates associated with their names,
together with appropriate trust anchor(s), and trust policies.

One notable point is that NDN host and application names are
not necessarily associated with the name of the network the host is
attached. Thus, when a mobile host attaches itself to a new network,
it may not need to re-provision its host and application names;
however, it may need to re-advertise those names, so that consumer
requests can be forward to the host.

To help the reader establish a mental context for this paper, we
start with a brief review of IP host’s basic functions and configu-
rations (Section 2), followed by a quick introduction of the basic
concepts in NDN (Section 3). We then describe the three contribu-
tions this paper aims to make: (i) a comprehensive overview of an
NDN host’s functions (Section 4) and configurations (Section 5);
(ii) a comparative analysis of NDN vs IP host functions and config-
urations (Section 6); and (iii) identification of the remaining tasks
needed to automate NDN host configurations (Section 7).

2 IP HOST FUNCTIONS AND
CONFIGURATIONS

In an IP host, different namespaces are used at different protocol
layers. An application running on a host produces data following
application-defined schemas, and passes the data to the transport
layer for delivery. The application process looks up DNS to con-
vert the names used by the application to destination IP addresses;
it also uses a well-known port number (based on the application
type), or may use a system-assigned port number (the application
can influence which port is assigned). The transport layer encap-
sulates (decapsulates) application data into (from) segments, adds
(removes) the transport layer header, and performs multiplexing
(demultiplexing) based on port numbers. The network layer en-
capsulates (decapsulates) transport segments into (from) network
datagrams, adds (removes) the network layer headers, and forwards
those datagrams whose destinations, i.e., IP addresses passed by the
transport layer, are not on the local subnet to the gateway router.
The data link layer encapsulates (decapsulates) network datagrams
into (from) frames, adds (removes) the data link layer headers, and

ACM SIGCOMM Computer Communication Review Volume 48 Issue 3, July 2018



delivers outgoing frames to next hop (determined by other mecha-
nisms). Notice that, each of the transport, network, and data link
layer adds a new header to the packet, to carry information needed
to perform its own functions.

The IP network layer has its own IP address space. When con-
necting to a network, an IP host needs to be configured with IP
addresses, network prefixes, gateway routers, and DNS servers,
either manually, or by some auto-configuration protocols, such as
Dynamic Host Configuration Protocol (DHCP) [5, 6], or stateless
address autoconfiguration mechanisms [7]. Notice that, as far as
IP connectivity is concerned, an IP host does not see application
semantics, so IP host configurations for network connectivity do
not involve application configurations; applications perform their
configurations independently in their own ways.

3 NAMED DATA NETWORKING
In the NDN architecture, a host performs work at four layers: ap-
plication (transport functions are implemented in system libraries
used by applications), network, data link, and physical. Compared
with the IP architecture (see Figure 1), NDN changes the proto-
col layers above network layer, and runs NDN network layer over
link layer (the link layer can be virtual links made of TCP/UDP/IP
tunnels).

application

transport

IP

link

physical

application

named 
data

link (can be
TCP/8'3�,3�WXQQHOV)

physical

transport

Figure 1: TCP/IP Architecture vs NDN Architecture

In NDN, every entity [8] (e.g., a host, an application, or a user)
has a semantically meaningful name, which is associated with a
public/private key pair, and the public key should be certified by
a self-signed or certificate authority (CA) issued certificate; a cer-
tificate is simply a piece of named data and is embedded in a Data
packet (in the rest of this paper, we use “Data” to represent both
“Data packet” and “Data packets”).

In an NDN host, a data-producing application signs every Data it
produces using its private keys directly, or indirectly (e.g., signing
a manifest made of the digest of a set of Data [9]). It may encrypt
the Data if the content access control is needed. Data-consuming
applications verify Data’s signatures by fetching the producer’s
public key certificates, then decide whether to trust the Data ac-
cording to their own trust anchors and trust rules [10]. If the Data
is access-controlled and hence encrypted, authorized consumers
will be granted the corresponding decryption keys. Interest packets
(in the rest of this paper, we use “Interest” to represent “Interest
packet”) are not signed by default; however, when an Interest is
used as a command or a producer needs to authorize the consumer
for specific purpose, an Interest can also be signed [11].

NDN directly uses application names for network layer packet
delivery. NDN network layer forwards application-created Interests
and Data directly, with no addition of new header or modification.

Specifically, it forwards Interests based on their names, and forwards
Data by reversing the path taken by the requesting Interest. One
Interest retrieves one Datawith the same name or a matching prefix.

NDN generalizes “network interfaces” and “application inter-
faces” to “faces” (Figure 2). Faces unifies (i) lower-level (layers
under NDN network layer) transmission mechanisms/protocols
that deliver packets to other hosts, and (ii) communication chan-
nels towards local applications into the same packet processing
logic which is implemented in the NDN forwarding module. The
forwarding module maintains three basic data structures [4, 12]: a
Pending Interest Table (PIT), a Content Store (CS), and a Forward-
ing Information Base (FIB). The PIT stores all received Interests that
have not been matched with Data and have not expired. The CS
caches, according to cache policies, previously retrieved Data to
satisfy future Interests for the same data. FIB entries, each is keyed
by a name prefix, record one or multiple faces via which potential
source(s) of matching Data can be reached. In addition, the forward-
ing module also maintains Forwarding Strategies, which determine
whether, when and where to forward each Interest, according to
the longest-prefix-matched FIB entry, the observed performance
from the 2-way Interest/Data exchange, and the local policies. Upon
receiving an Interest, the NDN forwarding module first checks CS
to see whether any cached Data has a matching name, and replies
with that Data if a match is found; otherwise, the forwarder checks
PIT to see whether any PIT entry has the same name, if so it aggre-
gates the new Interest with the existing PIT entry. If both checks
fail, then the Interest is handed over to the forwarding strategy,
which looks up the FIB and makes a forwarding decision. Details
of NDN packet processing logic can be found in [4], [12] and [13].

NDN Host

NDN Forwarding Module

Ethernet

Wifi

Bluetooth

Application
Interface

Application
Interface

Application
Interface

Face

Face

Face

Face

Face

Face

Face

LTE
CS PIT FIB

Forwarding Strategy

Figure 2: NDN forwarding module and faces in a host

An NDN Host Example
To facilitate explanations of NDN host functions and configurations,
we use a mobile phone as an NDN host example in this paper. A user
Alice has an NDN-enabled mobile phone, and she uses this phone
to browse the global NDN network (Figure 3(a)) which relies on
the infrastructure support, to control her own smart home network
(Figure 3(b)), or to communicate with other NDN hosts within her
local vicinity (Figure 3(c)). NDN enables the latter two cases to
work through wireless broadcast channels and ad hoc connectivity,
without reliance on infrastructure support .

ACM SIGCOMM Computer Communication Review Volume 48 Issue 3, July 2018



(a) global network (b) smart home (c) ad hoc network

Figure 3: An NDN Host in Different Networks

4 NDN HOST FUNCTIONS
NDN host may performs four basic functions, as shown in Table-1.
From an application’s perspective, an NDN host provides it nec-
essary running environment, and allocates to it a sub-namespace
and issues certificates;1 From the network’s perspective, an NDN
host runs the NDN forwarding module to dispatch packets among
all the faces, and sometimes behaves like a packet mule when the
host is on the move. This section uses the mobile phone example
described earlier to illustrate these functions.

Table 1: NDN Host Functions and Configurations

from whose
perspective functions required configurations

application

application running
environment provider N/A

namespace
manager

name, public/private key pair
and certificate;

trust rules and trust anchor

network
packet dispatcher faces, FIB and

forwarding strategies
packet mule cache policy

4.1 Application Running Environment
Provider

Alice’s mobile phone may host multiple applications and provides
necessary resources for them to work properly. That includes the
storage to install applications and store data, system resources—
such as CPU and memory—to run applications, and system libraries
supporting various commonly needed functions, e.g. reliable data
fetch, or NDN’s transport functions, such as distributed dataset
synchronization protocols [14].

4.2 Namespace Manager
After obtaining a name, generating a public/private key pair for
the name and receiving a certificate for the public key (see Section
5.1 for how to perform these functions), Alice’s mobile phone can
1Note that a host may also host applications whose namespace is not under that of
the host.

delegate sub-namespaces and issue certificates to other NDN en-
tities under its namespace. As an example, Figure 4(a) shows that
Alice’s mobile phone has a name “/edu/ucla/Alice/phone” and
its keys and certificate. An application running on Alice’s mobile
phone, e.g. the camera application, can obtain a sub-namespace
“/edu/ucla/Alice/phone/camera”, and request certificate from the
phone. All the applications, whether running on Alice phone or
elsewhere, can authenticate each other’s data if they share the same
trust anchor; applications with different trust anchors can also build
trust relationships among them through proper trust rules [15].

name: 
/edu/ucla/Alice/phone

Alice’s mobile phone

/edu/ucla/Alice/phone/camera

assign name and issue certificates

…

(a) Namespace Manager

Alice’s mobile phone

CS PIT FIB

Prefix Nexthop faces
to camera 

/edu/ucla/Alice/lightbulb
/edu/ucla/Alice/phone/camera

to lightbulb

Forwarding Strategy

(b) Packet Dispatcher

Figure 4: Alice’s Phone Works as an Namespace Manager
and Packet Dispatcher

4.3 Packet Dispatcher
The NDN forwarding module’s name-based forwarding logic and
face abstraction make Alice’s mobile phone a dispatcher for local
applications (Figure 4(b)). More specifically, the forwarding module
on the mobile phone creates a face to reach each local application
and adds a FIB entry with that face as the next hop to reach the app’s
namespace; it also creates a face for each network interface and
adds a FIB entry to reach external namespaces in the similar way.
This setup enables the forwarding module to directly “dispatch”
received Interests, which may come from either local or external
faces, that match local applications namespaces to the right local
faces, and “dispatch” received Data according to PIT entries.

4.4 Packet Mule
Equipped with PIT and CS, Alice’s mobile phone can buffer both
Interests and Data and carry them along as a packet mule when
it moves. This feature enables resilient forwarding when network
connectivity is unstable or intermittent, such as in an ad hoc sce-
nario in Figure 3(c). We use the example shown in Figure 5, a more
elaborated pictire of Figure 3(c), to illustrate packet muling.

In this ad hoc network, Bob’s and Cathy’s mobile phones are
too far apart to communicate with each other directly; however,
both Bob’s and Cathy’s mobile phones have unstable and intermit-
tent connections with Alice’s mobile phone situated in the middle.
Bob’s mobile phone wants to fetch aData “/edu/ucla/Cathy/phone
/pic-1” produced by Cathy’s mobile phone, so it keeps sending
Interests to request the Data.

Interest Muling: As Alice’s mobile phone can occasionally com-
municate with Bob’s phone, it receives the Interest for “/edu/ucla
/Cathy/phone/pic-1” and inserts it into the PIT. Alice’s mobile

ACM SIGCOMM Computer Communication Review Volume 48 Issue 3, July 2018



phone then becomes an Interest mule: this Interest is kept in its PIT,
even when the connectivity to Bob’s mobile phone is lost.

Data Muling: In the same way, Alice’s mobile phone forwards
this Interest to Cathy’s phone, retrieves the requested Data back,
and stores it into its CS. Alice’s mobile phone then becomes a Data
mule by caching this Data in the CS, even if its connectivity with
Cathy’s mobile phone is lost. Assuming that Bob’s mobile phone
keeps re-expressing the unsuccessful Interest, Alice’s mobile phone
will receive the same Interest again and reply with the cached Data.

The same logic should work even when Bob and Cathy’s mo-
bile phones can reach each other intermittently via multiple hops.
However we must note that the PIT and CS in each NDN host
provide only the buffering function for Interest and Data to en-
able packet muling. Additional mechanisms, such as the simple
persistent trying in this example, are needed to achieve effective
communications.

Alice’s mobile phoneBob’s mobile phone Cathy’s mobile phone

Data: /edu/ucla/Cathy/phone/pic-1Interest: /edu/ucla/Cathy/phone/pic-1

Figure 5: Alice’s Phone Works as a Packet Mule

5 NDN HOST CONFIGURATIONS AND
NAMESPACE REACHABILITY

To perform NDN host functions summarized in Section 4, an NDN
host, Alice’s mobile phone in our example, needs to be properly con-
figured. A few necessary configurations enables the mobile phone
to discover namespaces, learn reachability to external namespaces,
and propagate its own namespaces out by following given policies,
so that others can send Interests to the host—Alice’s phone.

Table 1 summarizes the configurations needed for each host
function. The current implementation of NDN forwarding module
pre-defines a few simple cache policies and forwarding strategies,
which we do discuss here. Except these two, a host needs three
other configurations. First, an NDN host needs to learn at least
one trust anchor together with default trust rules to enable it to
verify received Data. Second, it must obtain a name under which
it can publish Data and allocate sub-namespaces and associated
security credentials. Third, its local forwarding module needs to
set up initial faces and FIB entries for NDN communication.

In this section, we group host configurations into two categories:
1) security bootstrapping (Section 5.1) and 2) initial forwarding
configurations (Section 5.2). After the initial configuration, the
forwarding module in a host continues to adapt to applications’
requirements as well as connectivity changes through namespace
discovery and propagation (section 5.3).

5.1 Security Bootstrapping
When an NDN host first appears online, it must get a name, then
go through a security bootstrapping process, through which the
host obtains its trust anchor, its certificate, and learns trust policies.

Alice’s mobile phone, at this step, needs to securely obtain its name
and go through security bootstrapping as described below. The
description is brief due to the space limitations; readers interested in
learning more about NDN security bootstrapping may find further
details from [15].

Obtain a Name. The first step of host configuration is to obtain a
name if the host does not have one yet. Generally speaking, some
out-of-band knowledge is required to decide which entity should
assign the host a name and how the name is structured. For example,
Alice’s mobile phone is named (“/edu/ucla/Alice/phone”), either
via manual configuration or from the owner of its parent name
space (e.g., “/edu/ucla/Alice”).

Learn Trust Anchor and Trust Rules. With a name, Alice’s mobile
phone must obtain a trust anchor, which will allow the phone to
obtain a certificate, fetch the trust rules in order to establish trust
relationship with other NDN entities and learn about who can do
what. In general, the trust anchor can be pre-installed, through out-
of-band operations, into the mobile phone. The phone can fetch an
initial set of trust rules by following a given naming convention,
and establishing the trust anchor enables the phone to verify the
received trust rules.

Generate Public/Private Key Pair and Request Certificate. To prove
its ownership of its name obtained in the first step, an entity needs to
get a CA-issued certificate; notice that the CA should be trustworthy
as well according to its trust anchor(s) and trust rule(s). The mobile
phone generates a public/private key pair, with the private key
safely stored locally and the public key named under its name; then
it requests a pre-defined (or discovered) CA—such as UCLA CA in
the global network—to sign the public key to generate a certificate;
finally, it receives the certificate and saves it.

Security bootstrapping aims to establish initial trust, and the pro-
cess itself, which involves several Interest/Data exchanges between
the mobile phone and the CA, must be secured. To this end, the
authenticity of each side and integrity of every packet should be
ensured (e.g., via HMAC, with a symmetric key pre-shared between
both sides through a secure out-of-band operation), and dynamic
challenges are required to prevent potential replay attacks (e.g., via
including randomized tokens in communication messages).

5.2 Initial Forwarding Configurations
To initialize NDN communication, the mobile phone’s forwarding
module loads a configuration file to create initial faces and FIB en-
tries accordingly. More specifically, the forwarding module creates
some local faces for NDN forwarding module’s internal use, such
as by the forwarding module management; it also enumerates all
physical network interfaces and creates one or multiple non-local
faces on each of them to reach external namespaces, independent
from the specific underlying communication technologies those
interfaces use.

At the same time, some well-known and locally scoped name pre-
fixes are registered on those faces mentioned in the last paragraph,
creating initial FIB entries. Prefixes starting with “/localhost” are
registered on the local faces , so that management commands (such
as Signed Interests) can be dispatched to corresponding manage-
ment modules; prefixes starting with “/localhop” are registered
on non-local faces, enabling name discovery within one physical

ACM SIGCOMM Computer Communication Review Volume 48 Issue 3, July 2018



hop. With those initial FIB entries, the mobile phone can start to
receive and forward Interests. Readers can find further details about
the NDN node forwarding configuration from [12].

5.3 Namespace Reachability
Interest forwarding is determined by forwarding strategies (which is
not discussed in this paper) with input from the FIB, which indicates
which namespaces can be reached through which faces. An NDN
host, such as Alice’s phone, does not run a routing protocol in
general, so its FIB is not manipulated by routing protocols. Instead,
the forwarding module fills the FIB using a combination of default
routing, self-learning, and local application registrations, together
with automatic adaptation to connectivity changes.

New FIB entries would be created in the local forwarding mod-
ule when new namespaces become reachable. First, after being
authenticated, every local application can ask the local forwarding
module to create faces (between the forwarding module and local
applications), and register name prefixes on those faces to create
FIB entries. For example, the camera application, with a name and
certificate obtained from the local host, can ask the forwarding mod-
ule on Alice’s mobile phone to create a FIB entry for “/edu/ucla
/Alice/phone/camera”. Second, the local NDN forwarding module
can create FIB entries based on information learned from others.
More specifically, if the “self-learning” strategy [16] is triggered
by an Interest, the forwarding module will broadcast the Interest
to all available faces; it can then learn a prefix announcement pro-
vided by the target producer from the first response, and create
a FIB entry, as well as a face if necessary, for forwarding future
Interests under the prefix. Besides, an NDN host can propagate [17]
its own prefixes, aggregated from prefixes in the local FIB, to other
nodes, for them to create faces and FIB entries to forward Interests
matching those prefixes to the host. For instance, Alice’s phone can
propagate a prefix “/edu/ucla/Alice/phone” to a global network
router.

FIB adaptations can also be triggered by connectivity changes.
One example is, in dynamic environments, like the ad hoc network
in Figure 3(c) where connectivity is intermittent, or the mobile
phone moves from one WLAN to another, its network interfaces
may go up and down repeatedly or have link-layer parameters
changes (such as SSID or radio channels). When a network inter-
face goes down, the corresponding face(s) will be closed; the dead
face(s) will also be removed from the associated FIB entries to avoid
Interests being forwarded to them. When a network interface goes
up, one or more faces will be created immediately according to
forwarding module’s configurations, or later on along with the FIB
entry via “self-learning”. Moreover, link-layer parameter changes
will also trigger face closures and creations with similar forwarding
adaptions.

6 NDN HOST & IP HOST: A COMPARISON
NDN’s building block—named, signed Data, and shared namespace
between application and network layers—fundamentally changes
the functions and configurations of hosts. To help the reader see
these changes clearly, this section compares NDN hosts with IP
hosts from four aspects, to illustrate the differences resulted from
the network architecture changes.

6.1 Addresses vs. Topology-Independent
Names

IP networks (IPv4 or IPv6) use their own address space for network
layer packet forwarding, which is totally independent from the
namespaces used by applications. When an IP host moves to a new
network, it must be re-provisioned with new IP address(es) and
related parameters, to fit itself into the new network location.

In contrast, application and network layers on an NDNhost share
the same namespace. The NDN network layer directly forwards
application-created Interests and Data based on names. Once an
NDN host and applications running on it get configured with their
names and associated security credentials, the host may propagate
the namespace prefixes (maybe not all) reachability to attached
NDN routers and other hosts. When an NDN host moves to an-
other network, no reconfiguration is needed. Depending on the
network management policies, these application prefixes may not
propagate far, especially for mobiles. Thus, NDN’s use of topology-
independent names requires additional means, such as Forwarding
Hints [18], to make all Data reachable. Forwarding Hints introduces
additional complexity and overhead, as a necessary cost for the
gains of using application names for network layer delivery.

6.2 Security: Channel-Based vs. Data-Centric
Security solutions were patched into IP protocol stack after its
initial design. IP hosts secure communication channels by using
IPsec [19] protocol at the network layer and Transport Layer Secu-
rity (TLS) [20] at the transport layer; in cases stronger security is
needed, applications adopt other protocols at the application layer.

NDN was designed with security support: it uses named and
signed packets to design and implement security solutions. Packet
signatures enforce packet-level verification, and trust rules define
who can do what, enabling fine-grained authenticity; NDN also
provides other mechanisms, such as name-based access control
(NAC) [21], to enforce confidentiality when privacy is a major
concern.

NDN’s data-centric security framework ensures that Data are se-
cured at their generation time; then they stay secured, independent
of whether they are in transit or not, and where they are stored. As
application-created packets are directly used at the network layer in
NDN, once applications properly secure their packets, the network
communications are naturally secured. Meanwhile, compared with
current channel-based security practice used on IP hosts, NDN’s
new security mechanism does not depend on powerful servers or
middle boxes to handle secured channels with NDN hosts; each
secured NDN packet may be repeatedly consumed by multiple con-
sumers, which is more efficient than channel-based security model,
where each piece of Data needs to be secured separately for each
consumer.

6.3 Forwarding
Hiding Transmission Details by Adopting Unified Interface. In an
IP host, looking up from the network layer, the transport layer
multiplexes outgoing application data and demultiplexes incom-
ing network datagrams based on port numbers. When forwarding
outgoing datagrams, which is based on destination IP addresses
and forwarding rules, and looking down to the data link layer, an

ACM SIGCOMM Computer Communication Review Volume 48 Issue 3, July 2018



IP host needs to run ARP or NDP (or other protocols serving the
same purpose) to determine the link layer destination address, then
creates and delivers frames to the link layer destination.

By treating not only physical network lower-layer communica-
tion channels between hosts but also inter-process communication
channels between NDN forwarding module and local applications
as faces, NDN hides transmission details and provide unified in-
terfaces to the network layer. Further, by configuring which name
prefixes should go to which faces in FIB, NDN hosts unify incom-
ing and outgoing packets processing logic; thus, they can directly
forward the packets to other hosts or local applications based on
Forwarding Strategies and FIB.

Adapting to Namespace Reachability and Network Connectivity
Changes. As IP network uses its own address space, once an IP
host is provisioned, all applications running on it should make
use of those network configurations, rather than the network con-
figurations adapt to applications’ requirements and changes. In
some cases, such as when using TCP (but not MPTCP [22]) as the
transport protocol, applications should also adapt to host network
configuration changes, such as tear down previous connections and
use new IP address(es) to set up new connections with network
servers.

Utilizing application-layer namespaces, which usually do not
change along with host movement or connectivity changes, directly
at the network layer, NDN forwarding does not need to change
along with host movement or connectivity changes, but rather, it
needs to adapt to namespace reachability and network connectivity
changes (see Section 5.3 for details of how to perform adaptation).
As a result, applications running on NDN hosts do not need to
take account network configurations changes, instead, they simply
focus on their own logic.

Supporting Host Multihoming. An IP host is multihomed when
it gets configured with multiple IP addresses, each represents a
network location, and are connected to multiple networks. Usually,
when application or transport layer protocols use IP addresses to
identify connectivity/connections, i.e., when higher-layer identi-
fiers are coupled with network locations, they cannot take advan-
tages of host multihoming. To support host multihoming in IP,
network-location-independent higher-layer identifiers are required.
For example, MPTCP [22] uses multiple IP addresses, each is used
in a subflow; QUIC [23] identifies its connections using connection
IDs, which are independent from IP addresses.

Compared with IP, NDN utilizes application names, naturally
independent from network location and connectivity/connections.
As a result, NDN supports host multihoming at network layer and
allows one to send Interests and fetch Data via all/any available
faces.

Utilizing Forwarding Strategy. In IP hosts, whether, when, and
where to forward network datagrams are determined by destination
IP address (of datagrams being forwarded), its type, and forwarding
rules. Datagrams destined to broadcast and multicast IP addresses
are broadcasted and multicasted respectively; datagrams destined
to unicast IP addresses could only be forwarded via one physical
interface according to the configured local subnet and default router.

In contrast, since NDN inherently supports host multihoming,
the NDN forwarding module needs a decision module—that are

forwarding strategies—to decide whether, when, and where to for-
ward Interests. Importantly, NDN’s Interest-Data packet exchange,
where Data are forwarded back to where requesting Interests came,
provides rich feedback of current network conditions, thus enabling
forwarding strategies to make more intelligent decisions. For ex-
ample, Best Route Strategy ranks nexthop faces from lowest cost
to highest cost, sends Interests to them one by one if a previous
does not work; ASF strategy prioritizes nexthop faces based on their
performance in Data retrieval delay [12]. Apart from those existing
ones, new forwarding strategies can be designed and added when
the existing ones cannot achieve the desired goals.

6.4 Data Cache
In IP architecture, as the network layer does not understand ap-
plication layer data, generic in-network caching of IP packets is
not beneficial. Therefore, a host discards packets after forwarding
them or finding that it does not know how to forward them. NDN’s
data-centric communication model, along PIT and CS inside NDN
forwarding module, enables in-network cache, making hosts to be
natural Interest and Datamules (application level cache may still be
needed if NDN network level packet mule function is not enough).

As a result, an IP host can deliver data to another host only when
they are stably connected; while in NDN, consumers can fetch Data
not only from data producers, but also from other hosts that have
requested or forwarded the Data before, even there is only unstable
and intermittent connectivity (see Figure 5 for an example). This
amplifies host forwarding function and improves data availability.

7 CONCLUSION AND FUTUREWORK
As a new Internet architecture design, NDN changes the host model
from TCP/IP architecture in a fundamental way. To help people
interested in NDN, especially new NDN developers, get a basic
understanding of the NDN host model, this paper introduces the
basic functions of NDN hosts, and the bootstrapping process for an
NDN host to obtain necessary parameters to enable an NDN host
to function.

Different from an IP host which obtains one or multiple IP ad-
dresses from the network(s) it is attached to, an NDN host obtains
semantically meaningful name(s) that may or may not be location
specific. In addition to names, an NDN host must also possess cryp-
tographic key(s) and obtain certificates. The certified names, along
with trust rules and trust anchors, enable an NDN host to establish
trust relationship with other NDN entities, which further enable
NDN forwarding to adapt to namespace reachability and network
connectivity changes. We compare the NDN hosts with IP hosts,
demonstrating a number of differences in configuration, security,
forwarding and data cache.

The NDN development is still on-going, thus our understanding
of the NDN host model is likely to evolve over time as well, together
with our implementations in supporting NDN host functions and
configurations. Although we have implemented a number of mecha-
nisms, protocols and tools for configuring NDN hosts to perform its
basic functions, a big gap remains between how the configurations
should be done ideally and what has been implemented so far. For
instance, the cache policy and forwarding strategies are currently
preconfigured in the NDN Forwarding Daemon (NFD) [12]; in the

ACM SIGCOMM Computer Communication Review Volume 48 Issue 3, July 2018



future, we plan to support application or user defined cache policies
and forwarding strategies. As another example, NDN Certificate
Management Protocol (NDNCERT) [24] aims to automate security
configurations for new NDN hosts with UIs to obtain names and
request certificates from NDN testbed CAs; however we are also
porting NDN to run on small devices which have no or limited
user interfaces, this argues for eliminating dependency on UIs from
NDN configuration designs in general.

ACKNOWLEDGMENTS
This work is partially supported by the National Science Foundation
under awards CNS-1629922 and CNS-1719403. The writing also
greatly benefitted from the comments of the CCR editor.

[1] Kevin R Fall and W Richard Stevens. TCP/IP illustrated, volume 1: The protocols.
addison-Wesley, 2011.

[2] Van Jacobson, Diana K Smetters, James D Thornton, Michael F Plass, Nicholas H
Briggs, and Rebecca L Braynard. Networking named content. In Proceedings of the
5th international conference on Emerging networking experiments and technologies,
pages 1–12. ACM, 2009.

[3] Lixia Zhang et al. Named Data Networking (NDN) project. Technical Report
NDN-0001, NDN, 2010.

[4] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, et al. Named Data Networking.
ACM SIGCOMM Computer Communication Review, 2014.

[5] Ralph Droms. Dynamic host configuration protocol. RFC 2131, 1997.
[6] Ralph Droms, Jim Bound, Bernie Volz, et al. Dynamic host configuration protocol

for IPv6 (DHCPv6). RFC 3315, 2003.
[7] Susan Thomson, Thomas Narten, and Tatuya Jinmei. IPv6 stateless address

autoconfiguration. RFC 4862, 2007.
[8] Zhiyi Zhang, Haitao Zhang, Eric Newberry, et al. Security in named data net-

working. Technical Report NDN-0057, NDN, 2018.
[9] Ilya Moiseenko. Fetching content in named data networking with embedded

manifests. Technical Report NDN-0025, NDN, 2014.
[10] Yingdi Yu, Alexander Afanasyev, David Clark, et al. Schematizing trust in Named

Data Networking. In Proceedings of the 2nd ACM Conference on ICN, pages

177–186. ACM, 2015.
[11] NDN Project Team. Signed Interest. https://named-data.net/doc/ndn-cxx/

current/specs/signed-interest.html, 2018.
[12] Alexander Afanasyev, Junxiao Shi, Beichuan Zhang, Lixia Zhang, Ilya Moiseenko,

Yingdi Yu, Wentao Shang, Yanbiao Li, Spyridon Mastorakis, Yi Huang, Jerald Paul
Abraham, Eric Newberry, Steve DiBenedetto, Chengyu Fan, Christos Papadopou-
los, Davide Pesavento, Giulio Grassi, Giovanni Pau, Hang Zhang, Tian Song,
Haowei Yuan, Hila Ben Abraham, Patrick Crowley, Syed Obaid Amin, Vince
Lehman, Muktadir Chowdhury, and Lan Wang. Nfd developer’s guide. Technical
Report NDN-0021, Revision 10, NDN, July 2018.

[13] Cheng Yi, Alexander Afanasyev, Ilya Moiseenko, Lan Wang, Beichuan Zhang,
and Lixia Zhang. A case for stateful forwarding plane. Computer Communications,
36(7):779–791, 2013.

[14] Wentao Shang, Yingdi Yu, Lijing Wang, Alexander Afanasyev, and Lixia Zhang.
A survey of distributed dataset synchronization in named data networking. Tech-
nical Report NDN-0053, NDN, May 2017.

[15] Zhiyi Zhang, Yingdi Yu, Haitao Zhang, Eric Newberry, Spyridon Mastorakis,
Yanbiao Li, Alexander Afanasyev, and Lixia Zhang. An overview of security
support in Named Data Networking. Technical Report NDN-0057, Revision 3,
NDN, June 2018.

[16] Junxiao Shi, Eric Newberry, and Beichuan Zhang. On broadcast-based self-
learning in named data networking. In Proceedings of IFIP Networking, 2017.

[17] Yanbiao Li, Alexander Afanasyev, Junxiao Shi, et al. NDN automatic prefix
propagation. Technical Report NDN-0045, NDN.

[18] Alexander Afanasyev, Cheng Yi, Lan Wang, Beichuan Zhang, and Lixia Zhang.
SNAMP: Secure namespace mapping to scale NDN forwarding. In Proceedings of
18th IEEE Global Internet Symposium (GI 2015), April 2015.

[19] Rodney Thayer, Naganand Doraswamy, and Rob Glenn. IP security document
roadmap. RFC 2411, 1998.

[20] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.2. RFC 5246, RFC Editor, August 2008. http://www.rfc-editor.org/rfc/rfc5246.txt.

[21] Yingdi Yu, Alexander Afanasyev, and Lixia Zhang. Name-based access control.
Technical Report NDN-0034, NDN, 2015.

[22] Alan Ford, Costin Raiciu, Mark Handley, Sebastien Barre, and Janardhan Iyengar.
Architectural guidelines for multipath TCP development. RFC 6182, 2011.

[23] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic,
Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, et al. The
QUIC transport protocol: Design and Internet-scale deployment. In Proceedings
of the Conference of the ACM Special Interest Group on Data Communication, pages
183–196. ACM, 2017.

[24] Zhiyi Zhang, Yingdi Yu, Alexander Afanasyev, and Lixia Zhang. NDN certificate
management protocol (NDNCERT). Technical Report NDN-0050, NDN, 2017.

ACM SIGCOMM Computer Communication Review Volume 48 Issue 3, July 2018

https://named-data.net/doc/ndn-cxx/current/specs/signed-interest.html
https://named-data.net/doc/ndn-cxx/current/specs/signed-interest.html
http://www.rfc-editor.org/rfc/rfc5246.txt

	Abstract
	1 Introduction
	2 IP Host Functions and Configurations
	3 Named Data Networking
	4 NDN Host Functions
	4.1 Application Running Environment Provider
	4.2 Namespace Manager
	4.3 Packet Dispatcher
	4.4 Packet Mule

	5 NDN Host Configurations and Namespace Reachability
	5.1 Security Bootstrapping
	5.2 Initial Forwarding Configurations
	5.3 Namespace Reachability

	6 NDN host & IP Host: A Comparison
	6.1 Addresses vs. Topology-Independent Names
	6.2 Security: Channel-Based vs. Data-Centric
	6.3 Forwarding
	6.4 Data Cache

	7 Conclusion and Future Work
	Acknowledgments
	

