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ABSTRACT
Network telemetry is about understanding what is happening in
the current network. It serves as the basis for making a variety of
management decisions for improving the performance, availability,
security, and efficiency of networks. However, it is challenging to
build real-time and fine-grained network telemetry systems because
of the need to support a variety of measurement queries, handle a
large amount of traffic for large networks, while staying within the
resource constraints at hosts and switches. Today, most operators
take a bottom-up approach by passively collecting data from indi-
vidual devices and infer the network-wide information they need.
They are often limited by the monitoring tools device vendors pro-
vide and find it hard to extract useful information. In this paper,
we argue for a top-down approach: We should provide a high-level
declarative abstraction for operators to specify measurement queries,
programmable measurement primitives at switches and hosts, and
a runtime that translates the high-level queries into low-level API
calls. We discuss a few recent works taking this top-down approach
and call for more research in this direction.
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1 INTRODUCTION
Today, it is increasingly challenging to build and manage networks
for data centers, enterprises, and ISPs, which have increasing re-
quirements for high performance, high utilization, high availability,
and security. To meet these requirements, the first step is to under-
stand what is going on in the current networks. Often understanding
network state is the basis for and much harder than making the
right management decisions afterward. For example, to ensure good
and predictable performance, operators need to monitor the delay,
packet loss, and throughput for individual flows to quickly diagnose
performance problems whenever they happen. To increase the net-
work utilization (e.g., to near 100% [21]), operators need to first
continuously collect per-flow statistics and capture their changes
in real-time and then based on these statistics to adapt routing. To
ensure that the cloud has 99.9% or 99.99% of uptime, operators need
to quickly identify failure signatures and diagnose their root causes.
Finally, to improve cloud security, it is critical to detect attacks in a
timely fashion, especially from those attackers with a programmable

infrastructure (e.g., botnets) who can dynamically change their at-
tack characteristics. In summary, to meet all the key requirements of
network management, we need a network telemetry system to report
the state of the network in a timely and fine-grained fashion.

There have also been growing interests in network telemetry
in industry. MarketsandMarkets predicts that the network analyt-
ics market is worth 2.32 Billion USD by 2020 [1]. Major cloud
providers [10, 12] keep enhancing their network monitoring tools.
There is also a growing number of network analytics startups [2–
4, 11], which focus on providing better analysis and visualization
of the network state. These network analytics solutions heavily rely
on a scalable and efficient network telemetry system that provides
fine-grained and real-time network state information.

To build such a network telemetry system, there are several goals:
First, the system should support a diverse set of queries on fine-
grained and real-time network information for a variety of manage-
ment tasks. Second, the system should scale to a large amount of
traffic and a large number of switches and hosts, especially with
growing traffic and network sizes. Third, we should achieve the
above two goals while using limited resources at switches and hosts
and processing packets with limited time. We will elaborate on these
challenges in Section 2.

Today’s networks often use a bottom-up approach for network
telemetry. Operators have to configure individual network devices
based on specific monitoring tools available at these devices (e.g.,
NetFlow, sFlow, tcpdump), passively collect a massive amount of
data from these tools, and infer network-wide state from the collected
device-level data. To be able to understand network state using such
a bottom-up approach, operators have to collect a lot of data from
devices with high storage, bandwidth, and processing overhead.
Operators then aggregate such data and translate it into a network-
wide view that they need, which sometimes is a highly manual and
tedious process that requires operators’ expertise.

Instead, we argue for a top-down approach that redesigns the net-
work infrastructure to make network visibility as a first-class citizen.
This requires changing the measurement practice in three aspects:
(1) high-level declarative abstractions that decouple network-wide
measurement queries with underlying measurement mechanisms at
devices; (2) an efficient runtime system that translates high-level
queries to low-level configurations, and manages resources across
management tasks; (3) appropriate APIs and measurement primitives
in the underlying hosts and switches.

For the rest of the paper, we first discuss the importance of net-
work telemetry, its challenges, and the limitations of the bottom-up
approach in Section 2. We describe the new trend of the top-down
approach in Section 3. We survey recent work that uses the top-down
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approach for network telemetry and discuss future work in this area
in Section 4. Section 5 concludes the paper.

2 THE IMPORTANCE AND CHALLENGES OF
NETWORK TELEMETRY

In this section, we highlight the importance of network telemetry in
modern networks in two aspects: First, what are the key questions
operators expect to get from the telemetry system; Second, what
are the new trends in modern networks that increase the need for
network telemetry.

2.1 What do we need from network telemetry?
The first question to answer when we talk about any network teleme-
try system is always what data operators need to collect from the
network. This is a hard question to answer even for operators. We
informally surveyed operators from multiple cloud providers and
ISP networks, their answers are often highly related to the monitor-
ing tools available in their network devices. For example, operators
often mention that they need NetFlow data [5], syslogs [6], and TCP
statistics [7]. This means the network state operators need today is
highly constrained by the information they can get from network
devices.

Thus our goal is to reverse such the bottom-up thinking. We
argue that if we can provide abstractions for operators to specify
their queries for network states independent of the low-level device
capabilities, they can more freely think about what they need to see
in the network.

Another way to answer the question of what kind of information
we need from the network is to look at the applications. The ultimate
goal of the network telemetry system to serve network management
tasks and the main goals of managing a network are to achieve high
performance for the applications using the network, to provide high
network utilization to reduce the cost, and to improve the network
availability and security. Here are a few examples of management
tasks:

Profiling resource usage: Profiling individual tenants and appli-
cations is critical for billing, provisioning network resources, and
planning future network design. To ensure accurate and efficient
billing, provisioning, and planning, profiling need to be fine-grained
and periodically performed to capture changes in resource usage. To
support fine-grained profiling, operators need to collect fine-grained
and accurate statistics about individual flows at various locations
(e.g., every hop in the network and at hosts) on a fine time scale.

Identifying traffic pattern changes: When traffic patterns deviate
from normal cases, operators need to quickly detect the changes,
identify the reasons, and react to them. For example, if a tenant
suddenly receives a burst of traffic or two VMs who do not normally
communicate start to communicate a lot, these may be signals indi-
cating network events such as malicious behaviors, software bugs,
and failures. Operators need to analyze the traffic pattern changes
and identify the root cause. Even when the pattern changes are legit-
imate, operators still need to accommodate such changes with better
traffic engineering, load balancing, or job scheduling. This means in
addition to the normal counters such as the number of packets and
bytes kept in NetFlow, operators are also interested in other statistics

such as standard deviations, quantiles, traffic entropy in different
flow granularities (e.g., 5 tuple flows, sources, subnets, tenants) and
time granularities.

Diagnose failures and performance problems: Failures and per-
formance problems can have a variety of root causes such as link/device
failures, congestion, misconfigurations, slow routing convergence,
application software bugs, etc. Each of these root causes requires dif-
ferent types of information to diagnose. And it is hard to know ahead
of time what type of information is useful. Therefore, ideally, we
would like to get all the fine-grained (e.g., per packet) information
on a fine time scale. We should also get the information in a timely
fashion because operators need to quickly identify, isolate, and fix
these problems before applications or tenants notice, to minimize
the impact on tenants and on cloud revenue.

2.2 New needs for network telemetry
There are a few trends in network management that make a network
telemetry system even more important.

First, with the trend of software-defined networking, network
management solutions have become more automated than before.
With networks growing to larger scales, higher speed, and higher link
utilization, human operators can no longer afford to look at a screen
of data to understand the network state. Instead, we have to rely
on automated solutions which dynamically drill down based on the
current conditions and even automatically react to network events.
Such an automated reaction requires the network telemetry system
to provide fine-grained events with high accuracy on a fine time
scale (e.g., transient traffic bursts). We need high accuracy because
a wrong signal can easily lead to a chain of wrong reactions in a
fully automated system. We need information on a fine time scale to
enable fast reactions to emergencies (e.g., failures).

Second, given the increasingly complex interactions between ap-
plications and the network, it is challenging to diagnose performance
problems for these applications [40]. For example, to identify TCP
incast [38], we not only need to know the information of individual
flows that suffer from incast, but also the times when they are gen-
erated at hosts and when they arrive at switches, and all the other
packets that collide with the flows at switches. Therefore, to diag-
nose performance problems for applications, we need fine-grained
information for individual flows over time and across hosts and
switches.

Third, with the growth of cloud computing and IoT devices, the
number and types of attacks also keep growing [13]. Attackers often
have a programmable infrastructure (e.g., botnets) to dynamically
change the types and characteristics of the attacks to make the attacks
harder to detect. To keep up with the attack dynamics, it is important
to enable the flexible measurement support that can quickly capture
attacks as they happen, rather than waiting for vendors to add a new
attack detection feature at switches.

Finally, there is an increasing number of heterogeneous and pro-
grammable network devices and components in networks. These
components include programmable ASICs (e.g., P4 [8]), NetFPGA,
programmable NICs, software switches, virtualized network func-
tions, and RDMA, etc. These devices also bring new challenges
and opportunities for measurement because they provide different
performance and programming APIs for applications. A network
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telemetry system should collect detailed and customized information
for all these devices in the network to fully profile the end-to-end
performance and locate performance problems.

In general, the more information operators can get about the
network (from the static configuration of topology and routing, the
traffic from each tenant, to individual packets traversing at each
device), the more operators can make the right control decisions
(e.g., routing, traffic engineering, load balancing, and congestion
control). Therefore, it is important to support a wide variety of
measurement queries that are not limited to what network devices
provide today.

2.3 Key challenges
There are three key challenges in building a network telemetry sys-
tem:

Diverse, fine-grained, and real-time queries: All the parties in-
volved in networks – operators, application developers, and end
users – have different measurement requirements to understand the
network. Each of them may initiate different measurement queries
at different times such as understanding traffic for traffic engineer-
ing, detecting attacks when a sudden burst happen, or diagnosing
performance problems for individual applications. Most of these
measurement queries require fine-grained flow-level or packet-level
information to understand anomalies that only happen for a small
set of flows/packets or to fully understand the root cause of a net-
working event. These queries should also be answered in real-time
to support fast reactions to failures and attacks before they affect
network availability and security.

Scalability: We face scalability challenges when we collect fine-
grained information from large-scale networks. Networks today,
especially in data centers, can have millions of virtual machines
and hundreds of thousands of switches. IoT networks can also have
millions of IoT devices. At each device (e.g., VMs, switches, IoT
devices), there is a large number of events to measure. For example,
at a switch with multi-Tbps traffic, there can be as many as a million
active flows [31]. At a host with a 10Gbps NIC, we can see up to 14.8
million packets per second. These numbers mean that we need to
inspect millions of packets at line rates and store millions of entries
at each device. With increasing line rates, there is an increasing
amount of data to collect at each device and yet less time to collect
the data.

Limited resources and processing time: It is hard to measure a
large number of flows and packets with just limited resources at
switches and hosts. At switches, vendors often devote their lim-
ited memory resources to more important control functions such as
packet forwarding and firewalls. At hosts, most of the CPU resources
are used for revenue-generating applications. Only with the leftover
resources, we can support network telemetry. Yet, network telemetry
sometimes requires even more resources than control functions. This
is because network telemetry not only processes all the packets but
also store information for these packets.

In addition to the limited resources, there is also a limited time for
collecting information. For example, for a 40 Gbps port at a switch,
we only have 12 ns to process each packet. In such a short time,
switches have to complete many packet forwarding functions such
as packet header parsing and table lookups, in addition to network

telemetry. Similarly, for a 10 Gbps port at a host, we only have 70
ns to process a packet using the host CPU.

2.4 Today’s Bottom-up Measurement Practice
Today, most networks support network telemetry using a bottom-up
approach: Operators collect information from hosts and switches
using standard measurement tools, aggregate the per-device infor-
mation into a centralized collector, and analyze the data to extract
the information they want. There are three key problems of such an
approach:

Network devices capture too little information: Today, we are no
short of network monitoring tools at network devices. For exam-
ple, we have flow-level counters (e.g., NetFlow [5] and sFlow [39]),
logs at switches and hosts (e.g., SNMP [9], Syslog [6]), and packet
traces(e.g., tcpdump). However, due to the limited resources and
processing time at switches and hosts, most of these tools only col-
lect aggregated or sampled information. For example, today’s data
centers often apply a sampling rate of 1 in 1K for collecting Net-
Flow counters every few minutes. As a result, we may miss a lot of
important information related to transient events (e.g., microbursts)
or a small number of flows (e.g., anomaly flows).

Operators have too much information to process: On the other
hand, when operators aggregate the information collected from all
the hundreds of thousands of switches and hosts, there is often too
much information, making it hard to find the needles in the haystack.
For example, to detect a superspreader (i.e., the source VM that
suddenly starts to talk to many other VMs), operators have to inspect
all the VMs, extract their flow-level records, and aggregate them
by source, and compare the number with history numbers. Instead,
if we can provide operators with a clear abstraction of specifying
the type of flows they are interested in, and directly provide them
the related information, it would their jobs much easier and less
error-prone.

Operators lack network-wide view: The third problem is that to-
day operators have to configure individual devices and get measure-
ment data from each of them, take great efforts to manually integrate
diverse data across devices, and correlate them with network con-
figuration information to understand the network-wide events they
care about (e.g., performance problems, failures). This is often hard
to be done correctly and efficiently, given the timestamp differences
across devices, different granularities of aggregation and sampling
at devices, and routing changes. Moreover, as monitoring tools at in-
dividual devices get more configurable (e.g., flexible NetFlow [17]),
it becomes more challenging for operators to learn these knobs and
identify the best ways to configure these knobs.

3 A TOP-DOWN APPROACH FOR NETWORK
TELEMETRY

3.1 The top-down approach
To address the problems of today’s bottom-up approach, we promote
a top-down approach for network measurement. Figure 1 shows the
key components in our top-down approach:
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Figure 1: Top-down network telemetry

Declarative measurement abstraction: We introduce declarative
measurement abstractions for operators to clearly express their mea-
surement requirements without worrying about when, where, and
how to answer the queries. In this way, they can spend more time fo-
cusing on defining the right set of information they need to diagnose
network performance problems, to help serve applications better,
etc.

The declarative measurement abstractions should include the fol-
lowing principles: (1) Intent based: Operators should be able to
freely express their measurement intent independent of the underly-
ing measurement system. (2) Named principles: Operators should
be able to describe the traffic they want to measure not based on
packet header fields, but based on high-level names such as DNS
names, tenants, applications, or even dynamic flow properties (e.g.,
delay, loss rate, etc.). (3) Network-wide: Operators should be able to
specify their queries about the network-wide state without worrying
about where in the network the measurement should be performed.
(4) Many concurrent queries: Different management tasks, tenants,
or applications should be able to specify their queries at the same
time, without knowing the existence of other queries.

Efficient network-wide runtime system: Our telemetry system
should achieve the four above goals subject to minimizing the mea-
surement overhead. Thus, we need a runtime system that automati-
cally matches the measurement abstractions with primitives at de-
vices, dynamically allocates resources across queries and handles
network dynamics such as mobile hosts and routing changes. We
also improve the interactions between measurement and control by
optimizing measurement queries for specific control functions.

To answer the queries operators specify, the runtime system must
provide information with the following properties: (1) in real-time:
To quickly react to network events (e.g., traffic changes) and make
management decisions (e.g., traffic scheduling, performance isola-
tion), we need to provide real-time reports for some queries with low
overhead. (2) in different granularities: We may provide aggregated
information for some queries (e.g., to understand the overall traffic
volume), but provide fine-grained information for other queries (e.g.,
to identify anomalies). (3) with different levels of accuracy: Our sys-
tem should meet the accuracy requirements of measurement queries
while staying within the resource constraints.

To support these properties, we need to design new data struc-
tures and algorithms that minimize the memory we use to keep the
data, especially when the amount of data grows with the increasing
high link speed (e.g., 40Gbps and higher in data centers) and the
larger scale networks (with more traffic). We also need to reduce
the bandwidth usage between devices and the network-wide data
analyzer, while ensuring timely report of network states. Moreover,
it is important to multiplex resource usage across queries to best
improve the performance of all the queries.

New measurement primitives at devices: Given the measurement
abstractions, we can now design novel data structures and system
optimizations at different devices (VMs, hypervisors, NICs, and
switches). Because we can now focus on the information that op-
erators care about based on their specification, we can now design
better measurement algorithms towards these targeted data.

However, we cannot simply design the most efficient data struc-
tures for each individual measurement queries because there are
various types of queries and new queries appear as operators gain
a deeper understanding of their network behaviors. Therefore, we
need to carefully design the measurement primitives at different de-
vices to make them both generic in supporting diverse measurement
requirements, and efficient in packet processing performance with
limited resources and capabilities.

The measurement primitive design is specifically customized
for each type of devices, including hosts, switches, or other pro-
grammable devices (e.g., NetFPGA, smart NICs). Different devices
have different capabilities and views as summarized in Table 1.

Switches often have limited programmability (e.g., P4 [8]) while
hosts have more flexible programmability. Switches are limited in
on-chip memory size and the number of packet processing stages,
while hosts are often limited in CPU resources. However, switches
have much faster packet processing speed (in Tbps) than hosts.
Reconfigurable devices such as NetFPGA and smart NICs are often
in between switches and hosts in terms of both programmability and
packet processing speed.

Different devices offer different views of the network state. For ex-
ample, since hosts are closest to applications, they can often directly
report application-related or network stack problems. In contrast,
switches only see aggregated traffic information through them, but
they have unique access to in-network problems (e.g., link failures,
network congestion).

Due to the device differences, it is critical to automatically cor-
relate different sources of information from diverse devices, and
integrate them with network configuration information (e.g., topol-
ogy, routing) to provide a unified view of the entire network to
operators.

3.2 Differences with other approaches
We now compare the top-down approach with a few alternative
measurement solutions: universal measurement design and passive
logging of historical measurement data.

Differences with universal measurement design: Recent work [23,
33] identifies a single measurement solution (flow sampling [33]
or Universal Sketch [23]) that works for a variety of measurement
queries. While this approach is useful for a common set of mea-
surement queries today, it may neither work for new measurement
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Devices Switch Host Programmable devices
Programmability fixed primitives (e.g., P4) Flexible medium flexibility
Resources for measurement Limited on-chip memory, #stages Limited CPU Limited on-chip memory
Packet processing performance High Low medium
View aggregated traffic, in-network state application info location dependent

Table 1: Different capabilities and views on heterogeneous devices

queries that the proposed primitives do not support, nor work for new
algorithms and data structures that improve today’s solutions. Es-
sentially, the two approaches differ in the level of primitives devices
can support: Should they support specific measurement solutions
that work for a variety of measurement queries or use measurement
building blocks that allow programming different solutions? The
answer depends on how expensive it is to implement the two ap-
proaches in switches and hosts (in terms of chip resources, power
usage, etc.) and what the resource-performance tradeoffs are.

Differences with logging historical measurement data: Today,
many networks still rely on the bottom-up approach to collect mea-
surement data [31, 34] and keep the data in a database for future
queries. To reduce the storage overhead, they periodically summarize
the data into coarse-grained flows and time intervals. For example,
operators may keep per minute flow counters for the past hour, per
hour information for the past day, and per day information for the
past month, etc. The limitation of this approach is the lack of fine-
grained information at devices, too much information for operators
to process in the database, and the lack of network-wide view as
discussed in Section 2.4. With the growth of measurement data on
larger networks and links with higher link speed, it becomes funda-
mentally challenging to track every detail of the network at a large
scale, at a fine timescale, and with high accuracy and low resource
usage.

While our top-down approach addresses these limitations, it also
has its own limitations: We may miss the opportunities to look into
history data that operators have not thought about recording in their
queries; We may also miss a transient event if it takes too long to
narrow down to the right query.

Ultimately, we believe a combination of the two approaches would
work: We rely on the top-down approach to capture data for real-time
queries while also collect coarse-grained data in the database for
future queries.

4 RECENT ADVANCES IN NETWORK
MEASUREMENT AND FUTURE WORK

In this section, we describe a few recent works that share the same
vision of our top-down approach and discuss open questions. This
section is by no means complete in covering all the related works
but hopefully provides a taxonomy of the works in this space.

4.1 Declarative queries
Queries on high-level names: Similar to how software-defined net-
works allow operators to specify their control functions based on
high-level names [15], we should allow operators to freely describe
the traffic they want to measure using high-level names such as hosts,

applications, and tenants. The paper [16] proposes intentional net-
work monitoring, which allows operators to collect traffic based on
intents such as people, applications, or devices. It then automatically
maps these intents with low-level packet header fields by leveraging
the information learned from other systems such as Domain Name
System (DNS) and Border Gateway Protocol (BGP). Sonata [19] pro-
vides a declarative interface using expressive dataflow operators on
extensible tuple-based abstractions. Sonata can express queries such
as detecting attacks and newly opened TCP connections and then
compiles these queries down to switch rules with limited memory.

Path-level and network-wide queries: In addition to monitoring
traffic at a selected location, it is also important to check a flow
along network paths. For example, traffic engineering requires mea-
suring the ingress-egress traffic matrix; debugging a congested link
requires determining the set of sources sending traffic through that
link; locating a faulty device might involve detecting how far along
a path the traffic makes progress. Instead of collecting traffic in-
formation at all the devices along the path and integrate them af-
terward, PathQuery [29] proposed a declarative query language for
efficient path-based traffic monitoring. Path queries are specified as
regular expressions over predicates on packet locations and header
values, with SQL-like “groupby” constructs for aggregating results
anywhere along a path. Only when packets satisfy a query are the
packets counted, sampled, or sent to collectors for further analysis,
which significantly reduces data collection overhead.

NetSight [20] introduced a network-wide query framework to sup-
port applications that require extracting the full journey of selected
packets. Such a network-wide query framework can be useful for
a variety of management tasks such as interactive network debug-
ging, live invariant monitoring, and network profiling and logging.
However, these queries still rely on first capturing packet histories
from all the switches in the entire network. Based on the collected
data, each application can analyze the collected data to answer the
network-wide queries. It is an open question on how to reduce the
overhead by performing more query-specific data collection.

Managing states across queries Statesman [35] provides a network
state management service that captures various aspects of the net-
work such as which links are alive and how switches are forwarding
traffic. Statesman then shares such information across management
applications and allows applications to change the states (e.g., rout-
ing) back to the network. It would be great to follow Statesman to
manage more states than topology and routing.

Future work: A broader set of networks Most of the above work
focuses on queries for data center networks. Other networks such
as enterprise networks, ISP networks, cellular networks, and IoTs
introduce new challenges for measurement queries: (1) New types
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of queries: Some networks may have new types of devices (e.g.,
many NFVs in ISP and cellular networks) and new types of queries
(e.g., for security, for in-network processing functions) that require
us to introduce new high-level names and query abstractions. Strobo-
Scope [37] provides a good first step for defining query languages for
traffic mirroring in ISP networks. (2) New measurement constraints:
Some networks may have policies on which devices to collect mea-
surement data and constraints on which types of measurement data
to collect due to privacy or other access constraints. It is important
to introduce ways to specify these constraints and introduce new
measurement solutions that accommodate these constraints. (3) New
scalability challenges: IoT networks, in particular, can easily be
millions of devices. It is important to continuously monitor each
IoT device because it has frequently changing events and reactions
(e.g., cameras on moving vehicles) while the communications among
the devices and between the devices and the central controller are
limited.

4.2 Efficient runtime to compile queries
Given the declarative queries, the next question is how to build a
good runtime that maps queries to low-level measurement primi-
tives. Although there have been many runtime supports for control
functions in SDN, there is limited research on the runtime for mea-
surement queries.

Resource management for concurrent queries: DREAM [25, 26]
proposes a resource management framework for multiple concurrent
measurement queries while ensuring a user-specified level of accu-
racy. The key observation is that there is a tradeoff between resource
usage and accuracy for measurement queries. The tradeoff depends
on the type of queries, their parameters, and traffic characteristics.
DREAM does not assume an a priori characterization of this trade-
off, but instead dynamically searches for a resource allocation that
is sufficient to achieve a desired level of accuracy. DREAM can
support more concurrent queries with higher accuracy than several
other alternatives.

Composing control applications: Pyretic [24] introduces new ab-
stractions for building applications out of multiple, independent
modules such as measurement, routing, and load balancing. Pyretic
then introduces two operators: the parallel composition operator that
allows multiple policies to operate on the same set of packets, and
the sequential composition operator that allows one policy to process
packets after another. Pyretic also enables each policy to operate on
an abstract topology that implicitly constrains what each module can
see and do.

We should extend Pyretic to support the composition of measure-
ment queries. For example, we need to investigate ways to allow the
parallel composition of measurement queries that share a subset of
measurement data. We can also study sequential composition that
allows a control application to get feeds from a measurement query.

Future work: There are still several challenges on building the
runtime: (1) real-time reports at large scale: In data centers with
thousands of switches and hundreds of thousands of hosts, it is an
open question on how to provide real-time reports from all these
devices for many concurrent queries. (2) Handle dynamics: Another
question is how to handle the cases when the mappings between

the high-level queries and the underlying measurement dynamically
change with query changes, traffic changes, and topology changes.
(3) Provide the right level of information: When a tenant sends
queries about its own traffic, the runtime needs to provide the right
level of information that is related to the tenant’s traffic. For example,
when a tenant experiences performance problems, it is not helpful
to expose all the topology changes and traffic changes to him/her.
Instead, the runtime should filter the right set of changes that are rel-
evant to the performance problem and provide them in a meaningful
way to the tenant.

4.3 New data-plane primitives
Commodity and Programmable switches: DREAM [25] lever-
ages the flow-based counters at commodity switches. Several pro-
posals leverage PISA switches to implement measurement using
match-action tables [19] or hash-based data structures [22, 23, 41].
Recent work [30, 37, 42] leverages “match and mirror” functionality
on commodity switches to track traffic. Other work [14, 18, 32]
relies on pings and traceroutes to diagnose network failures.

Marple [28] introduces a new programmable key-value store
primitive on switch hardware. The key-value store performs flexible
aggregations at line rate (e.g., a moving average of queueing latencies
per flow), and scales to millions of keys. Marple can support a set of
new switch queries that could previously run only on end hosts while
only occupying a modest fraction of a switch’s hardware resources.

Hosts: At hosts, Trumpet [27] presents an event monitoring sys-
tem that monitors every packet and reports network-wide events at
millisecond timescales. Trumpet allows operators to describe new
network events such as detecting correlated bursts and loss, identify-
ing the root cause of transient congestion, and detecting short-term
anomalies at the scale of a data center tenant. SNAP [40] collects
network stack information with low computation and storage over-
head, and use that to identify performance problems that happen at
applications or the network (or both).

Coordinating switches and hosts: SwitchPointer [36] observes
that monitoring at end-hosts often requires more resources but less
visibility into the network while network switches often have more
visibility into the network but limited resources. SwitchPointer coor-
dinates switches and hosts by using switch memory as a “directory
service” which stores pointers to the relevant telemetry data at end-
hosts.

Future work: There need to be more works on improving measure-
ment primitives at different devices in the following aspects: (1) New
measurement primitives on different platforms: We need to introduce
new designs that are well suited for NFVs (which need a different
amount of CPU and memory for different types of traffic) and IoT de-
vices (which also care about energy consumption). (2) Transforming
existing measurement primitives to the top-down approach: There
have been many measurement tools on switches and hosts such as
SNMP counters, tcpdump, and NetFlow [17]. It would be interesting
to transform these bottom-up solutions to top-down ones so that op-
erators can focus on the actual network-wide performance or failure
problem rather than configuring individual devices for these tools.
(3) Primitives that support emergent streaming algorithms: There
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have been many recent advances in streaming algorithms for differ-
ent measurement queries (e.g., DDoS detection, entropy estimation,
microburst detection etc.). It is important to identify a general set of
primitives in switches and hosts that support these algorithms better.

5 CONCLUSION
In this paper, we discuss the importance and challenges of net-
work telemetry. We promote the top-down approach which enables
operators to write measurement queries in a declarative way. To
answer these queries, we need a runtime that maps the queries to
the programmable primitives at switches and hosts. We discuss re-
cent efforts in building such network telemetry systems and future
research directions.
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