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ABSTRACT
Max-min fair is widely used in network tra�c engineering to allo-
cate available resources among di�erent tra�c transfers. Recently,
as data replication technique developed, increasing systems enforce
multi-source transmission to maximize network utilization. How-
ever, existing TE approaches fail to deal with multi-source transfers
because the optimization becomes a joint problem of bandwidth
allocation as well as �ow assignment among di�erent sources. In
this paper, we present a novel allocation approach for multi-source
transfers to achieve global max-min fairness. The joint bandwidth
allocation and �ow assignment optimization problem poses a major
challenge due to nonlinearity and multiple objectives. We cope
with this by deriving a novel transformation with simple equiv-
alent canonical linear programming to achieve global optimality
e�ciently. We conduct data-driven simulations, showing that our
approach is more max-min fair than other single-source and multi-
source allocation approaches, meanwhile it outperforms others
with substantial gains in terms of network throughput and transfer
completion time.
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1 INTRODUCTION
Max-min fair is a simple, classical and well-recognized sharing
principle to de�ne fairness in the �eld of data networks [14]. In
particular, it deals with the �ow control problem in network tra�c
engineering (TE), where available resources (such as link band-
width) are allocated among di�erent tra�c transfers [13]. Aiming at
allocating rates to available links as evenly as possible, the max-min
fair allocation is such that the result for the transfer with smallest
sharing has been maximized over all feasible resource allocation so-
lutions. As the development of software-de�ned networking (SDN),
max-min fair has become the most widely used principle in modern
datacenter networks or WANs, such as B4 [9], BwE [11], SWAN [8],
OWAN [10]. Leveraging a centralized controller, max-min fairness
results in more stable service quality than other principles, e.g.,
proportional fairness.

Data replication, a technique that amends both data availability
and access e�ciency, is emerging increasingly in recent datacen-
ter networks and distributed �lesystems [7, 15, 17]. To maximize
network utilization and improve transmission performance, it is in-
creasingly allowed to convey data in parallel from multiple sources
for a transfer with multiple data replicas, a.k.a a multi-source trans-
fer [2, 16]. However, a multi-source transfer will result in multiple
�ows, so multiple potential bottlenecks might be considered simul-
taneously to achieve transfer-level fairness. Existing TE approaches

are no longer applicable because the allocation becomes a joint
problem to optimally allocate each �ow’s bandwidth as well as to
assign �ows among the sources [8, 9, 11].

In this paper, we present a novel max-min fair allocation ap-
proach that jointly optimizes bandwidth allocation and �ow as-
signment. The major challenge stems from the direct formulation
which is nonlinear and multi-objective. We cope with this by de-
riving a novel transformation with simple equivalent canonical
linear programming (LP) to achieve global optimality. We perform
extensive simulations, which show that our approach leads to better
performance on network throughput with a gain of up to 52% and
reduces transfer completion time by up to 44%, compared to other
single-source and multi-source allocation approaches.

2 NETWORK MODEL AND PROBLEM
FORMULATION

A network is comprised of a set of nodes and a set of links L. Let
Cj denote the capacity of link Lj (j 2 [1,M]). Consider N data
transfers, coming from one or multiple sources, so each transfer i
(i 2 [1,N ]) is assigned with a set of �ow paths {Pi1, ..., Pik }, and
each such path is identi�ed with the set of links that it uses, i.e.,
Pik ✓ L. Now we de�ne the data rate of transfer i as ri , which is
the sum bandwidth of the constituent �ows from all sources. We
use a variable setXi = {xi1, ...,xik } to express the �ow assignment
proportions from di�erent sources for transfer i , so

ÕKi
k=1 xik = 1,

where Ki is the total source number of transfer i .
Objective and constraints. Our goal is to solve a joint band-

width allocation and �ow assignment problem, i.e., �nding the
transmission rate ri and the assignment proportions Xi of each
transfer. When computing allocated bandwidth, the objective is to
maximize network utilization while in a max-min fair manner. A
vector of transfer rate allocations {ri } is said to be max-min fair
if and only if, for any other feasible allocation {r 0i }, the following
has to be true: 8r 0p > rp for the data transfer p, there exists another
transfer q such that p,q 2 [1,N ], r 0q < rq , rq  rp . The constraints
of this problem are given as below. Constraint (1) is called the ca-
pacity constraint, which assures that for any link Lj , its load does
not exceed its capacity Cj . Constraints (2) and (3) promise the sum
fractions of a transfer from all available sources equal to 1.

s .t .
’

Lj ✓Pik
ri · xik  Cj 8j, (1)

Ki’
k=1

xik = 1 8i, (2)

0  xik  1 8i,k . (3)

Figure 1 shows an example where the six links {L1, ...,L6} have
capacities {8, 5, 4, 5, 7, 6} in Gbps respectively. Consider three data
transfers, among which transfer 1 and 2 have a single data source
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Figure 1: An example with 3 transfer requests. Transfer 3
comes from two feasible sources B and C, corresponding to
two parallel �ows f31 and f32.

while transfer 3 has two. As a result, there are four potential �ows
in total, including f1 : A ! C ! B ! D, f2 : A ! C ! E,
f31 : B ! D ! F and f32 : C ! E ! F . Given the topology and
values of link capacities, we aim at �nding the max-min fair solution
of the rate vector {r1, r2, r3} and the �ow assignment {x31,x32} for
transfer 3.

3 APPROACH SPECIFICATION
One of the biggest challenges for multi-source transmission stem-
s from changing the optimized object from an individual 5-tuple
�ow into a group of �ows that belong to the same transfer. Hence,
multiple potential bottlenecks might be considered simultaneously.
To this end, we design a MultiSource Water-Filling (MS-WF) algo-
rithm which can jointly compute bandwidth allocation and �ow
assignment while providing global max-min fairness. The key to
MS-WF algorithm is a novel transformation with simple equivalent
canonical LP. In this section, we �rst brie�y describe the traditional
water-�lling algorithm and its limitation. Then we present the MS-
WF with one multi-source transfer for clear illustration. A general
solution that optimizes arbitrary �ow transfers is provided after-
ward. At last we discuss some practical issues of the multi-source
framework.

3.1 Flow-link Mapping Matrix and Traditional
Water-Filling Algorithm

The proposed MS-WF algorithm is based on a �ow-link mapping
matrix (FL matrix) with solvable variables. Here we de�ne the FL
matrix, and illustrate the traditional water-�lling algorithm with
this matrix.

De�nition 1 (Flow-link Mapping Matrix). The �ow-link mapping
matrix (FL matrix) { f li j } expresses the �ow paths and the tra�c
assignment of each transfer in matrix form. The element f li j 2
[0, 1] is de�ned as the proportion of �ow i in its belonging transfer
that uses link Lj .

Water-Filling (WF) Algorithm. The traditional WF algorithm
can compute the bandwidth allocations for single-source transmis-
sion. Using the FL matrix as an input, we �rst denote the saturated
average bandwidth allocation as �j = Cj/nj , where nj is the total
number of �ows that use link Lj . TheWF algorithm iteratively �nds
the minimum � ⇤ and the corresponding bottleneck link Lj⇤ . Set the
bandwidth of the �ows that use link Lj⇤ to � ⇤. The FL matrix is

L1 L2 L3 L4 L5 L6
f1 1 1 1 0 0 0
f2 1 0 0 1 0 0
f31 0 0 1 0 0 1

Cj 8 5 4 5 7 6
nj 2 1 2 1 0 1

τj 4 5 2 5 NA 6

(a)

L1 L2 L4 L5 L6
f2 1 0 1 0 0

Cj 6 3 5 7 4
nj 1 0 1 0 0

τj 6 NA 5 NA NA

(b)

Figure 2: An example of the FL matrix for single-source
transmission, where transfer 3 only uses one source. Cj is
the bandwidth capacity, nj =

Õ
i f li j is the total number of

�ows that use link Lj , and �j = Cj/nj is the saturated average
bandwidth share. (a) Illustration of the �rst iteration, where
L3 is found as the bottleneck link withminimum �j . (b) Illus-
tration of the second iteration with the updated FL matrix,
where L4 is then found as the bottleneck link.

then updated by subtracting these �ows and the bottleneck link to
calculate a new set of {�j }. Such process repeats until all transfers
attain their allocated rates, i.e., all �ows have bottleneck links.
Example. Consider a single-source version of Figure 1, where we
assume transfer 3 only uses source B, so there are 3 �ows over the
network. Figure 2 illustrates the allocation algorithm for this single-
source example. In the �rst iteration, L3 is �rst saturated because
�3 is of the minimum value � ⇤ = 2. We allocate the bandwidth of
f1 and f31 that traverse L3 to 2, and then remove the rows of f1,
f31 and column L3. The FL matrix is updated accordingly for the
next iteration, where link L4 is then found as the bottleneck and
bandwidth of f2 is set to 5. By this point, the ultimate solution to
the rate allocation for the 3 transfers is (2, 5, 2).

The traditional WF algorithm is successful in obtaining the max-
min fair allocation for single-source transmission. Though it is
incapable of dealing with multi-source transfers. This is mainly due
to the fact that, instead of transfers, the WF algorithm is based on
�ows. For the example provided in Figure 1, by using the traditional
WF algorithm, transfer 3 will have double weights, which is unfair
to the others. A naïve solution is to normalize the weight of each
transfer, and then to assign an equal share to the �ows from di�er-
ent sources. Regarding the example, the elements for f31 and f32
become 1/2 and 1/2 in the FL matrix, such that each transfer has the
same sum weight of 1. The allocation result turns into (8/3, 10/3, 3),
which is slightly better than the (2, 5, 2) - using only source B and
(2.5, 4, 2.5) - using only source C , namely the single-source cases.
However, as we will soon learn, simply sharing the �ow weights
equally is still not the optimal solution. The transfer-level max-min
fair allocation is conditioned by the optimal �ow assignment.

3.2 MS-WF Algorithm with One Multi-source
Transfer

Given the FL matrix and its application, now let’s consider a more
complex case by adding one multi-source transfer into the network.
We assume there are Km available sources for the particular trans-
ferm, though the �ow assignment Xm is unknown and needs to be
solved. The MS-WF algorithm continues to use the FL matrix, but
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Algorithm 1MS-WF Algorithm with one multi-source transfer
Input:

Flow-link mapping matrix: FL = {f li j };
Capacity of each link:

�
Cj

 
, 1 6 j 6 M ;

Output:
Transmission rate of each transfer: {ri } , 1 6 i 6 N ;
Flow assignment of transferm: Xm = {xm1, ..., xmk };

• Step 1: . Initiation
1: ri  0, 8i = 1, ..., N ;
2: L  {L1, L2, ..., LM };

• Step 2: . Calculate the saturated average bandwidth
3: nj (Xm ) Õ

i f li j , 8j 2 L;
4: �j (Xm ) Cj /nj (Xm ), 8j 2 L;

• Step 3: . Find the bottleneck fair share � ⇤
5: if min {�j (Xm )} is a constant then
6: X⇤  ?;
7: else
8: X⇤  Xm |max min {�j (Xm )};
9: end if
10: � ⇤  min {�j (Xm )};
• Step 4: . Set data rate and update the FL matrix
11: Lj⇤  {Lj |�j (Xm ) = � ⇤ };
12: L  {Lj⇤ L;
13: for i |Pi \ Lj⇤ , ? do
14: ri  ri + � ⇤;
15: Remove fi from FL;
16: end for
17: Update FL;
• Step 5: . Iteration
18: if No transfers left then
19: return {ri } and Xm ;
20: else
21: goto Step 2.
22: end if

replaces the elements from 0 and 1 as in the traditional WF into
the unknown variables in Xm for transferm. The MS-WF algorith-
m with one multi-source transfer (Algorithm 1) is described as
follows:

• Step 1: Start from zero allocation and build the FL matrix
with variables Xm .

• Step 2: Compute the saturated average bandwidth �j (Xm )
on each link Lj .

• Step 3: Find the bottleneck fair share � ⇤ =min{�j (Xm )} by
solving X⇤ = Xm |maxmin{�j (Xm )}.

• Step 4: Set the data rate to � ⇤ for the �ows that traverse
the bottleneck links, and update the FL matrix by removing
those �ows and links.

• Step 5: Stop if there are no transfers left; otherwise return
to Step 2.

In Step 2, similar to the traditional WF algorithm, MS-WF com-
putes nj (Xm ) by summarizing the elements of column j in the FL
matrix. Here nj (Xm ) is the number of transfers that traverses link
Lj . Since transferm comes from multiple parallel �ows, there might
be only a part of it using link Lj . Therefore,nj becomes a function of
Xm instead of an integer value as in the traditional WF. After that,
MS-WF calculates the average bandwidth �j (Xm ) = Cj/nj (Xm ),
which is also a function of Xm .

L1 L2 L3 L4 L5 L6
f1 1 1 1 0 0 0
f2 1 0 0 1 0 0
f31 0 0 x 0 0 x
f32 0 0 0 1� x 1� x 0

Cj 8 5 4 5 7 6
nj 2 1 1+ x 2� x 1� x x

τj 4 5 4
1 +  

5
2 −  

7
1 −  

6
 

Figure 3: An example of MS-WF, where transfer 3 comes as
two �ows. x is the �ow assignment variable to be calculated.
�j in orange cell is found as the minimum bottleneck share.

In Step 3, potential bottleneck links are found given {�j (Xm )} on
the current link set. Speci�cally, the �ow assignment is determined
by X⇤ = Xm |maxmin{�j (Xm )}. We use � ⇤ to denote the minimum
bandwidth share, and the set of {Lj⇤ } is found as the bottleneck
links. As all the variables Xm are within a certain range [0, 1],
min{�j (Xm )} is sometimes a constant value. In that case, no �ow
assignment variable is calculated, i.e., X⇤ = ?.

Back to the example in Figure 1, transfer 3 has two available
sources to access, leading to two parallel �ows f31 and f32. With-
out loss of generality, we use only one variable x to denote the
proportion of f31, so the proportion of f32 will be 1 � x . Figure 3
illustrates the FL matrix, followed by the saturated average band-
widths {�j (Xm )}.

In MS-WF, Step 3 �ndingX⇤ that maximizesmin{�j (Xm )}, is the
major challenge. Speci�cally, it is to �nd x⇤ = x |maxmin(4, 5, 4/(1+
x), 5/(2 � x), 7/(1 � x), 6/x) in Figure 3. First, as formulated in
Problem 1, it is a nonlinear programming problem, which can not
be directly solved. Second, even though there is a linear expression,
the solution needs long sequences of LPs for the max-min objective
(multi-objective), which are computationally intense in practice.

Problem 1 (The nonlinear optimization problem in Step 3).

max min{�j (Xm )}, (4)

s .t .
Km’
k=1

xik = 1 xik 2 Xm , (5)

0  xik  1 8i,k . (6)

To this end, we propose a novel transformation which converts
the nonlinear optimization problem into a canonical form of LP
problem based on Theorem 1. The equivalent canonical LP prob-
lem is de�ned in Problem 2, which can be e�ciently solved under
limited computational complexity.

Problem 2 (The equivalent canonical LP problem in Step 3).

min t (7)
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s .t . t � � 0j (Xm ) 8j, (8)
Km’
k=1

xik = 1 xik 2 Xm , (9)

0  xik  1 8i,k . (10)

Theorem 1. Problem 1 is equivalent to Problem 2 as a canonical LP
problem, where � 0j (Xm ) = 1/�j (Xm ).

P����. Given an arbitrary instance of the FL matrix, �j (Xm ) sat-
is�es two conditions: i) �j (Xm ) � 0, and ii) the inverse of �j (Xm ) is a
linear function of Xm . So we let � 0j (Xm ) = 1/�j (Xm ), and the objec-
tive ofmaxmin{�j (Xm )} is then equivalent tominmax{� 0j (Xm )},
which becomes linear accordingly. Next, we introduce a temporary
variable t = max{� 0j (Xm )}, and use a sequence of inequality con-
straints t � � 0j (Xm ) for all j to express t . Since � 0j (Xm ) is a linear
function of Xm , the constraint (8) as a set of inequalities is also
linear. In the end, the optimization problem in Step 3 (Problem 1)
turns into an equivalent canonical LP problem (Problem 2), where
the decision variables to be solved are the �ow assignment set Xm
and t . ⇤

Consequently, the optimization problem in Figure 3 can be trans-
formed into a simple equivalent LP problem shown as follows.

min t (11)

s .t . t � 1
4
, (12)

t � 1
5
, (13)

4t � x � 1, (14)
5t + x � 2, (15)
7t + x � 1, (16)
6t � x � 0, (17)
0  x  1. (18)

The results of the above LP come out as x = 1/3 and t = 1/3.
So � ⇤ = 1/t = 3 is the minimum fair share, and L3 and L4 are
the bottleneck links that are saturated in this iteration. We set
r1 = r2 = 3 as the bandwidth of f1 and f2, and r3 = 3 as the sum
bandwidth of f31 and f32. Meanwhile, the data volume assignment
of transfer 3 concludes with 1/3 from source B and 2/3 from source
C . The �nal rate allocation to the 3 transfers are (3, 3, 3), which
is more max-min fair than the allocation (2, 5, 2) where transfer 3
uses only source B (as in Figure 2), as well as the allocation (2.5, 4,
2.5) where transfer 3 uses only source C . In addition, if we don’t
consider the impact of date volume and assume each transfer has
the equal volume of 3Gbits , then MS-WF outperforms the single
source approaches in terms of the average completion time (MS-
WF: (3/3+3/3+3/3)/3=1, source B: (3/2+3/5+3/2)/3=1.2) and sourceC :
(3/2.5+3/4+3/2.5)/3=1.05), as well as total completion time (MS-WF:
3/3=1, source B: 3/2=1.5 and source C: 3/2.5=1.2).

3.3 General MS-WF
Having solved the preliminary instance with onemulti-source trans-
fer, now we consider the general MS-WF with arbitrary transfer
combinations. Here the variables become the �ow assignments

{Xi } (i 2 [1,N ]) for all transfers. Except for the transfers with a
single source, whose Xi = {1} for all the time, the rest of {Xi } are
to be computed by MS-WF. The main challenge is that the �ow
assignments of di�erent transfers correlate to each other and can
not be calculated independently. One transfer’s assignment plan
may a�ect another’s optimal decision. Therefore, the max-min fair
allocation requires joint calculation for all �ow assignments.

The general MS-WF mainly follows the procedures in Algorith-
m 1. Exceptionally, we put all sets of the variables {Xi } into the
FL matrix, such that �j turns into a function of {X1, ...,XN }. By
the same token, we transform the nonlinear optimization problem
in Step 3 into an equivalent canonical LP problem with the help
of one additional decision variable t . In each iteration, parts of
the �ow assignment sets are solved by LP based on Theorem 2.
Then we plug the values into the FL matrix and remove them from
{X}. Continue iterating until all �ow assignment variables Xi are
determined. Finally, we sum up the constituent �ow rates as the
multi-source transfer rate, i.e., ri =

ÕKi
k=1 rik , where Ki is the total

source number of transfer i . The detailed proof of Theorem 2 can
be found in our technical report [1].

Theorem 2. Multiple sets of variables Xi can be jointly calculated
by MS-WF.

3.4 Discussion
Extension. The MS-WF algorithm is scalable and extensible for
more complex use cases. For instance, di�erentiated qualities of
service lead to transfers with variations in priority or other require-
ments, such that MS-WF is capable of supporting weighted fair
allocation by taking priority factors into account. The max-min fair
principle can also be applied to di�erent optimization objectives
(e.g., transfer completion time), and the adaption of MS-WF with
consideration of data size can likewise yield the optimal results for
multi-source transfers.
Applicability. The driving application scenario for the MS-WF
algorithm is the Large Hadron Collider (LHC) network, which re-
quires deadline scheduling of large-scale datasets (e.g., petabytes) to
be transferred around over 180 member sites all over the world [5].
Fairness among large-scale science data�ows is one of the most
important metrics for the LHC network, and the current schedul-
ing system performs poorly in terms of fairness due to missing a
fairness-aware scheduling framework for the multi-source trans-
fers. Our multi-source transmission framework is part of the pre-
production deployment of Unicorn [18], an SDN geo-distributed
data analytic system in the CMS (one of the largest scienti�c exper-
iments in the LHC network).

The experimental SDN system relies on a logically centralized
controller to orchestrate bulk transfers. Since the system is for large-
scale datasets, the average �ow duration may vary from hours to
several days. The computation complexity is signi�cantly reduced
in MS-WF by transforming a nonlinear multi-objective problem
into a single LP. Experimental results show that the computation
time for 1000 concurrent �ows in MS-WF is at most 40 seconds, and
it can be further reduced by removing the redundant constraints in
implementation [12]. Therefore, our approach is scalable to practi-
cally handle large-scale datasets and networks.
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4 PERFORMANCE EVALUATION
To evaluate the performance of MS-WF algorithm on a large-scale
network, we develop a simulator on a datacenter network.

4.1 Simulation Methodology
Topologies: Our experiments were conducted by emulating a 3-
tier datacenter network topology with 8:1 oversubscription. The
topology contains 64 servers; the capacity of each edge link is
1Gbps; the capacity of the aggregated link is 10Gbps .
Workloads:We synthesize a stream of transmission requests with
a total number of 1000. A Poisson process is used to model the
arrival of requests; the arrival rate � is de�ned as the average num-
ber of new transfers per time slot. We set the slot length to be
only a second for fast simulation. A transfer has multiple sources
with probability �. We assume that a multi-source transfer have
a random number of replicas between [2,5], which are randomly
placed in servers. We ignore the �uctuation of transfer size in the
simulations, and assume a uniform size V for all transfers.
Performance metrics: We use average transfer completion time
and network throughputto show the improvements of MS-WF.
Alternative approaches: We compare the following bandwidth
allocation approaches, each of which adopts the traditional WF
algorithm.

• Best-source: This approach selects a best replica source
based on the algorithm in [16] for multi-source transmission.

• Equal-share: This approach splits a transfer across di�erent
sources equally. For instance, each replica will send 1/3 of
the data, if a transfer has 3 replicas.

• Random-source: This approach randomly selects an avail-
able source for each transfer.

4.2 Simulation Results
Figure 4 displays the simulation results of network throughput,
for which the arrival rate � = 2 and the data size V = 10Gbits
for all of the 1000 transfers. Shown by the results, Random-source
approach, disregarding the dissimilarity of the sources, performs
the worst, and retains a constant throughput value. Equal-share
approach takes advantage of source diversity in a naïve manner;
when we have limited diversity to a small number of multi-source
transfers (at low multi-source probabilities), equal �ow sharing can
approximate the optimal assignment, therefore obtaining a similar
performance as MS-WF. But as the multi-source proportion rises,
the 1000 transfers lead to more potential �ows. The e�ect of “bad
�ows” enlarges, and therefore pulls down the overall throughput
improvement. This way, Best-source approach outperforms Equal-
share. MS-WF achieves a much higher throughput than the others
by jointly optimizing the bandwidth allocation and �ow assign-
ment, leading to higher network utilization. When all transfers
have multiple sources (� = 1), compared with the Random-source
transmission, MS-WF obtains a substantial throughput gain for up
to 52%.

Figure 5 compares the transfer completion time versus three
factors respectively: the multi-source probability �, the transfer
size V and the transfer arrival rate �. We observe directly from
the �gure: across all parameter con�gurations, MS-WF achieves
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Figure 4: Network throughput vs. multi-source probability
�, where the arrival rate � = 2 and the data size V = 10Gbits.

the smallest transfer completion time. This improvement is mainly
acquired from a more max-min fair allocation by MS-WF.

Figure 5(a) illustrates the impact of �, which approximately e-
quals to the proportion of multi-source transfers. The constant gap
between Random-source and the other approaches demonstrates
that, leveraging multiple sources is more e�cient for data transmis-
sion and can perform much better by placing more replicas in the
network. Compared to single-source transmission, MS-WF cuts the
average completion time down by up to 44%. Figure 5(b) shows the
relationship with V . As transfer size goes up, the transfer backlog
begins to cause more bottleneck links, which results in degradation
of transmission rates. Therefore, the completion time surges super-
linearly along with the transfer size for all the allocation approaches.
But by completing transfers as quickly as possible, MS-WF is able
to achieve almost linear completion time growth. This way, it is
capable of optimizing data transfers for both small and large �les.
Figure 5(c) illustrates the impact of �. As expected, at higher arrival
rates, the number of �ows is likely to be increased, and links are
more likely to become congested. Accordingly, the performance
degrades quickly for all approaches other than MS-WF. The smaller
growth in completion time demonstrates that, by e�ectively avoid-
ing the congestion point, MS-WF manages to handle a relatively
larger amount of tra�c without degrading the performance.

5 RELATEDWORK
Distributed �lesystems. Several high-performance distributed
�lesystems with su�cient data replicas have been developed, in-
cluding GFS [7], HDFS [17] and Quantacast File System [15]. Lever-
aging SDN, May�ower [16] performs global optimizations to make
intelligent replica selection and �ow scheduling decisions based
on both �lesystem and network information. Nevertheless, current
solutions focus heavily on best replica selection and data replication
placement, instead of multi-source transmission as in our work.
As shown in the proceeding sections, single-source transmission
fails to achieve transfer-level max-min fairness, therefore provides
sub-optimal performance.
Co�ow scheduling. The works that schedule parallel �ows have
been developed to optimize transfers at the level of co�ow rather
than individual ones. Co�ow [3], Varys [4] and Barrat [6] improve
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Figure 5: Impact of (a) themulti-source probability �, (b) the data sizeV and (c) the transfer arrival rate � on average completion
time. In each sub�gure, we adjust one factor and �xed the other two. The three default values are � = 0.5, V = 10 and � = 2.

application-level performance by minimizing co�ow completion
times and guaranteeing predictable completions. However, their
basic assumption is that the �ows are streamed for di�erent data
and the volume of each �ow is designated in advance, so they can
easily predict the completion time and allocate the rate to meet
their deadlines. The improvement of our approach over them is that
the �ow volume assignment is jointly optimized with bandwidth
allocation to achieve global optimality.

6 CONCLUSION
We present a novel max-min fair allocation approach for multi-
source transmission which conveys data in parallel from multiple
sources and dynamically adjusts the �ow volumes to maximize
network utilization. The allocation relies on a MultiSource Water-
Filling algorithm that jointly computes the bandwidth allocation
and �ow assignment with simple equivalent canonical LP to achieve
global optimality. Extensive simulations validate that, compared to
other single-source and multi-source allocation approaches, our ap-
proach achieves a better throughput gain of up to 52% and decreases
transfer completion time by up to 44% for large-scale transfers. We
believe this approach is applicable to various tra�c management
systems that orchestrate arbitrary bulk transfers. Developing such
systems will be the next step of this research.
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