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Network virtualization requires e�cient mapping of virtual networks onto

the physical network. Unfortunately, this problem is NP-complete, and solv-

ing it approximately also poses serious computational challenges. Existing

solutions tend to be heuristics that do not provide formal performance guar-

antees.

Matthias Rost, Elias Döhne, and Stefan Schmid explore a parameterized-

complexity approach and first consider the Valid Mapping Problem (VMP)

that asks for a valid minimal-cost mapping of a virtual network onto the phys-

ical network. Specifically, the authors consider the virtual-network treewidth

as a parameter that captures closeness of the virtual-network graph to a tree.

While virtual networks typically have bounded treewidth, the paper develops

a DynVMP algorithm that decomposes the virtual-network graph into trees

and applies dynamic programming to solve VMP starting from the leaves

of the tree decomposition. The computational complexity of the solution

belongs to the XP class, and DynVMP runs in polynomial time for virtual

networks with bounded treewidth. Then, using a Fully Polynomial-Time Ap-

proximation Scheme (FPTAS) for minimum-cost Latency-Constrained Short-

est Paths (LCSP), the paper adapts DynVMP to support latency constraints.

Based on their successful solution for VMP, the authors tackle the Virtual

Network Embedding Problem (VNEP) where the virtual-network mapping

should be not only valid but also feasible with respect to capacity con-

straints. In particular, Rost, Döhne, and Schmid extend their previous

column-generation linear-programming approximation for the o✏ine VNEP

and generalize the solution for an arbitrary virtual-network graph. Again, the

proposed solution runs in polynomial time for virtual networks with bounded

treewidth and is adapted to accommodate latency constraints.

Supplementing the theoretical results on achieved runtime and solution-

quality guarantees, the paper experimentally evaluates its approach against

existing heuristics. First, the evaluation assesses the treewidth of random

graphs and shows that their tree decomposition can be done on the order

of seconds. Then, the paper examines the runtime and performance of its

solution for the o✏ine VNEP with four ViNE-heuristic variants.

Public review written by
Sergey Gorinsky

IMDEA Networks Institute, Spain

ACM SIGCOMM Computer Communication Review Volume 49 Issue 1, January 2019



Parametrized Complexity of Virtual Network Embeddings:
Dynamic & Linear Programming Approximations
Matthias Rost

TU Berlin, Germany
mrost@inet.tu-berlin.de

Elias Döhne
TU Berlin, Germany

edoehne@inet.tu-berlin.de

Stefan Schmid
University of Vienna, Austria
stefan_schmid@univie.ac.at

ABSTRACT
This paper makes the case for a parametrized complexity approach
to tackle the fundamental but notoriously hard Virtual Network
Embedding Problem. In particular, we show that the structure of
the to-be-embedded virtual network requests can be exploited to-
ward fast (i.e.,fixed-parameter tractable) approximation algorithms,
using dynamic as well as linear programming algorithms.

Our approach does provide formal guarantees on the runtime
and solution quality and can safeguard also latency constraints.
Using extensive computational experiments we demonstrate the
practical relevance of our novel approach.

CCS CONCEPTS
•Networks→Network resources allocation; •Theory of com-
putation → Fixed parameter tractability;

KEYWORDS
Virtual Network Embedding, Approximation, Fixed-Parameter
Tractability, Dynamic Programming, Linear Programming

1 INTRODUCTION
The Virtual Network Embedding Problem (VNEP) captures the
essence of many resource allocation problems in networks [5]:
Given are a substrate network, representing the physical infras-
tructure, and a virtual request graph, representing a customer’s
workload; the task is to map each virtual request node to a phys-
ical substrate node and to realize each virtual request edge as a
path in the substrate connecting the respective servers while safe-
guarding, among others, capacity constraints. The VNEP has at-
tracted much interest over the last years and is closely related to
other embedding problems, e.g., the embedding of service function
chains [8], virtual clusters [1], or virtual datacenters [13]. Indeed,
in all of these cases a request topology is to be embedded in the
provider’s physical substrate network. Figure 1 gives an example.

Alas, the VNEP is algorithmically very challenging: it is
NP-complete and inapproximable under any objective [10]. Even
more, the VNEP remains NP-complete in the absence of capac-
ity constraints. Concretely, given restrictions on the mapping of
request nodes and edges, the respective Valid Mapping Problem
(VMP) asking to determine a valid mapping respecting only the
given restrictions, is NP-complete, even for planar and degree-
bounded request graphs. However, the VMP is not only an elemen-
tary problem, solving the VMP was recently also shown to be of
crucial importance for the development of approximations for the
VNEP: to approximate the offline variant of the VNEP using ran-
domized rounding the computation of (convex combinations of)
valid mappings using Linear Programming (LP) is necessary [11].
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Figure 1: Exemplary embedding of a request on a substrate.
The numbers represent demands and allocations/capacities.

Contributions. This paper initiates the study of a parametrized
complexity approach to solve the fundamental Valid Mapping
Problem, which in turn leads to novel solutions for the VNEP.
The motivation behind a parametrized complexity approach is
that many NP-hard problems become polynomial-time tractable
when considering input parameters beyond the input size: the
parametrized complexity classes F PT and XP contain prob-
lems that can be solved in time O (2poly(k ) · poly( |X |)) and
O ( |X |poly(k ) + poly( |X |)) for a problem instanceX with parameter
k , respectively [6]. We employ the treewidth of the request graph
as parametrization, which measures the closeness of the request
graph to a tree [2] and derive a number of new results:
(1) We develop the dynamic programming algorithm

DynVMP to solve the VMP, which runs in XP-time
O (npoly(k )S · poly(nS · nr )), where nS and nr denote the
number of substrate and request nodes, respectively, and k
denotes the treewidth of the request graph. Thus, for graphs
of bounded treewidth DynVMP runs in polynomial-time.

(2) Based on Linear Programming duality, we show that the
DynVMP algorithm can be used as separation oracle and de-
rive an efficient column generation approach for solving Linear
Programming relaxations of the VNEP. Accordingly, the previ-
ous (polynomial-time) approximation result of [11] for cactus
graphs is generalized to graphs of bounded treewidth, while
yielding XP-approximations for all other graph classes.

(3) For the VNEP with per-edge latency constraints, we derive a
novel approximation result based on computing approximate
latency-observing mappings using the DynVMP algorithm.

(4) To demonstrate the applicability of our approach in practice,
we study the treewidth of random graphs, and evaluate ran-
domized rounding heuristics with state-of-the-art heuristics.

Novelty & RelatedWork. TheVNEP has receivedmuch attention
over the last years and we refer to the survey [5] for an overview.
Most existing works consider heuristics which do not provide any
formal performance guarantees.

Much less is known about polynomial-time approximation al-
gorithms. Even et al. [4] present an approximation algorithm for
linear chain requests. A first more general approximation of the
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offline VNEP (cf. Definition 2.5) was recently proven for the class
of cactus request graphs [11], i.e. graphs in which cycles intersect
in at most a single node. In particular, it was shown that the pre-
viously known Multi-Commodity Flow (MCF) LP formulation [3]
yields invalid mappings. Hence, the integrality gap of the MCF for-
mulation is unbounded, rendering it useless for approximations.
Accordingly, a novel LP formulation was proposed which always
returns valid mappings, but grows in size compared to the MCF LP.

In this paper, we present a parametrized column genera-
tion approach to compute optimal LP solutions for arbitrary re-
quest graphs based on dynamic programming. Leveraging this
parametrized complexity perspective, we not only generalize the
previously known approximation to arbitrary graphs, but also ob-
tain approximations for the VNEP under latency constraints. We
are not aware of any VNEP approximations respecting latencies.

Structure. Section 2 introduces our formal model, and Section 3
presents the idea of decomposing requests into trees. Our dynamic
program is given in Section 4 and our approximations in Section 5.
In Section 6 rounding heuristics are discussed. Our evaluation is
presented in Section 7. We conclude our work in Section 8.
2 FORMAL MODEL
Within this section theVNEP and theVMP are formally introduced.
As latency constraints play an important role in Service Function
Chaining [8], we (optionally) incorporate these here.

Substrate Network. We refer to the physical network as sub-
strate network and model it as directed graph GS = (VS ,ES ). Ca-
pacities of the substrate are given via the function dS : GS → R≥0.
The capacity dS (u) of node u ∈ VS may represent the number of
(virtual) CPUs while the capacity dS (u,v ) of edge (u,v ) ∈ ES rep-
resents the available bandwidth.We denote byPS the set of all sim-
ple paths in GS . Each substrate element x ∈ GS may be attributed
with costs cS (x ) ∈ R≥0 for using it (per unit capacity). Substrate
edges may be attributed with latencies via lS : ES → R≥0.

Request Graphs. A request is similarly modeled as di-
rected graph Gr = (Vr ,Er ) together with node and edge de-
mands dr : Gr → R≥0. Per edge latency bounds are given by
lr : Er → R≥0, when latencies are considered. Each request r ∈ R
may be attributed with a profit br ∈ R≥0 that the provider obtains
when embedding the request, subject to the following restrictions.

Mapping Restrictions. Virtual nodes and edges can only be
mapped on substrate nodes and edges of sufficient capacity. Fur-
thermore, the customer or provider may restrict the mapping of
request nodes i ∈ Vr and edges (i, j ) ∈ Er by providing sets of
forbidden substrate nodes V i

S ⊆ VS and edges E
i, j
S ⊆ ES . The

set V i
S may for example include substrate nodes too distant to

the customer or servers not suited to host the functionality of re-
quest node i . Similarly, the set Ei, jS contains edges which must
be avoided due to security or other technical policies. Accord-
ingly, we denote the set of suitable substrate nodes for i ∈ Vr by
V r,i
S = {u ∈ VS \ V

i
S | dS (u) ≥ dr (i )} while the set of suitable

substrate edges for (i, j ) ∈ Er is denoted by Er,i, jS = {(u,v ) ∈
ES \ E

i, j
S | dS (u,v ) ≥ dr (i, j )}. The maximal demand dmax (r ,x ) of

any request element for a single substrate resource x ∈ GS is de-
fined as dmax (r ,u) = max({0} ∪ {dr (i ) | i ∈ Vr : u ∈ V r,i

S }) and

dmax (r ,u,v ) = max({0} ∪ {dr (i, j ) | (i, j ) ∈ Er : (u,v ) ∈ Er,i, jS }) for
substrate nodes u ∈ VS and edges (u,v ) ∈ ES , respectively.

Problem Definitions. According to the above introduction of
mapping restrictions, a valid mapping is defined as follows.

Definition 2.1 (Valid Mapping). A valid mapping of request r ∈
R to the substrate GS is a tuple mr = (mV

r ,m
E
r ) of functions that

map nodes and edges, respectively, s.t. the following holds:
• The function mV

r : Vr → VS maps virtual nodes validly to sub-
strate nodes, such thatmV

r (i ) ∈ V r,i
S holds for i ∈ Vr .

• The function mE
r : Er → PS maps virtual edges (i, j ) ∈ Er to

valid simple paths in GS connecting mV
r (i ) to mV

r (j ), such that
mE
r (i, j ) ⊆ Er,i, jS holds for (i, j ) ∈ Er .

• When latencies are considered ∑
(u,v )∈mE

r (i, j ) lS (u,v ) ≤ lr (i, j )
must hold for (i, j ) ∈ Er .

The set of all valid mappings of request r is denoted byMr . !
Hence, a valid mapping enforces the validity of each single vir-

tual element with respect to mapping restrictions and resource ca-
pacities. Cumulative resource allocations are defined as follows:

Definition 2.2 (Allocations). We denote by A(mr ,x ) ∈ R≥0 the
resource allocation induced by the valid mapping mr = (mV

r ,m
E
r )

on substrate element x ∈ GS . For u ∈ VS and (u,v ) ∈ ES the
following holds, respectively: A(mr ,u) =

∑
i ∈Vr :mV

r (i )=u dr (i ) and
A(mr ,u,v ) =

∑
(i, j )∈Er :(u,v )∈mE

r (i, j ) dr (i, j ). We denote the maxi-
mal allocation that a valid mapping may impose on a substrate
resource x ∈ GS by Amax (r ,x ) = maxmr ∈Mr A(mr ,x ) . !

A set of mappings is feasible if it respects resource capacities:

Definition 2.3 (Feasible Embedding). A set of mappings {mr }r ∈R
over a set of requests R is feasible, if and only if ∑r ∈R A(mr ,x ) ≤
dS (x ) holds for x ∈ GS . A single mapping mr is feasible, if this
holds for the singleton set {mr }. !

The online and offline VNEP are defined as follows:

Definition 2.4 (Online Virtual Network Embedding Problem). The
online VNEP asks for a feasible embeddingmr of a single request
r minimizing the cost c (mr ) =

∑
x ∈GS cS (x ) · A(mr ,x ). !

Definition 2.5 (Offline Virtual Network Embedding Problem). The
offline VNEP asks for a feasible embedding {mr }r ∈R′ of a subset
of requests R ′ ⊆ R maximizing the profit ∑r ∈R′ br . !

As the feasibility of an embedding implies the validity of the
respective mappings, the computation of valid mappings is a pre-
requisite for both VNEP variants. We also introduce the (online)
Valid Mapping Problem as follows:

Definition 2.6 (Valid Mapping Problem (VMP)). Given a request r ,
theVMP asks for finding the validmappingmr minimizing the cost
function c (mr ) =

∑
x ∈GS cS (x ) · A(mr ,x ). !

We note that when request demands are small compared to the
substrate capacities, the online VNEP reduces to the VMP:

Observation 2.7. Given a request for which any valid mapping
mr ∈ Mr is feasible, i.e. Amax (r ,x ) ≤ dS (x ) holds for all substrate
resources x ∈ GS , then the online VNEP reduces to the VMP: an opti-
mal solution to the VMP is an optimal solution to the VNEP.
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3 REQUEST GRAPH TREE DECOMPOSITIONS
In the following, we revisit the notion of tree decompositions [2, 6]
and apply it to request graphs. Tree decompositions are used to rep-
resent arbitrary graphs as trees (cf. Figure 2). The definition of tree
decompositions ensures that (i) all nodes and edges of the request
graph are covered while (ii) preserving crucial structural informa-
tion of the original graph. Combinatorial optimization problems as
the VMP can then be solved on this tree representation by using
dynamic programming [6]. As tree decompositions are defined for
undirected graphs, we consider undirected request graphs:

Definition 3.1 (Undirected Request Graph Gr ). For a request
graph Gr = (Vr ,Er ) its undirected interpretation Gr = (Vr ,Er ) is
given by Er = {{i, j}|(i, j ) ∈ Er } on the original node set Vr . !

Note that directed, antiparallel edges (i, j ), (j, i ) ∈ Er of the orig-
inal request graph are accordingly represented using only a single
undirected edge {i, j} ∈ Er . Tree decompositions, here concerning
the request graphs, are then defined as follows [6].

Definition 3.2 (Tree Decomposition Tr = (Tr ,Br )). Given an
undirected request Gr = (Vr ,Er ), a tree decomposition of Gr is
a pair Tr = (Tr ,Br ) consisting of an undirected treeTr = (VT ,ET )
and a family Br = {Bt }t ∈VT of subsets Bt ⊆ VT , also referred to as
the node bags, for which the following conditions hold:
(1) For all request nodes i ∈ Vr , the set V−1T (i ) = {t ∈ VT | i ∈ Bt }

of tree nodes containing node i is connected in Tr .
(2) Each request node and each (undirected) request edge is con-

tained in at least one of the bags: ∀i ∈ Vr . ∃t ∈ VT : i ∈ Bt and
∀{i, j} ∈ Er . ∃t ∈ VT : {i, j} ⊆ Bt hold. !
The treewidth is then defined as follows (cf. [6]):
Definition 3.3 (Width of a Tree Decomposition and Treewidth).

The width tw(Tr ) ∈ N equals the maximal bag size minus one, i.e.
tw(Tr ) = maxt ∈VT |Bt | − 1. The treewidth of an undirected graph
equals the minimal width among all tree decompositions. !

Finding tree decompositions of minimal width is itself a chal-
lenging optimization problem and known to beNP-hard [6]. How-
ever, if the treewidth of a graph G is known to be k ∈ N, the prob-
lem of finding a tree decomposition is fixed-parameter tractable.
Several important graph classes (including many request topolo-
gies usually considered in the literature) are known to have small
treewidths (cf. Table 1). The example requests of Figure 2, a service
chain [8] and a virtual cluster [1], have treewidths 1 and 2 respec-
tively, as the service chain is outerplanar and the virtual cluster is
a tree. However, even if a request graph does not belong to a graph
class of bounded treewidth, recent exact algorithms can compute
optimal tree decompositions in a matter of seconds (see Section 7).

A tree decomposition naturally groups request nodes together
into node bags. As the size of each bag is bounded for graphs

Graph Class tw Description
trees 1 connected graph without cycle
cacti 2 cycles intersect only in a single node

series-parallel 2 source-terminal graphs; generated us-
ing parallel and serial composition

(1-)outerplanar 2 planar graph; nodes lie on outer face
k-outerplanar k + 1 planar graph; removal of outer face

nodes yields (k − 1)-outplanar graph
Table 1: Graph Classes of Bounded Treewidth [2]
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Figure 2: Depicted are two exemplary virtual network re-
quest graphs together with corresponding tree decomposi-
tions: a load-balancing service chain and a virtual cluster
with 5 VMs. The covering node bags are depicted in the mid-
dle, while the resulting trees are depicted on the bottom. The
widths of the decompositions are 2 (left) and 1 (right).
of bounded treewidth, this allows to perform more complex op-
erations on the whole bag in polynomial-time. In particular, in-
stead of mapping single virtual nodes, we will consider the joint
mappings of all request nodes contained in the bags. While the
number of mapping possibilities grows exponentially in the node
bag’s size, it is polynomial for graphs of bounded treewidth. Con-
cretely, the number of mapping possibilities for a node bag Bt
equals ∏

i ∈Bt |V
r,i
S | ∈ O ( |VS |tw(Tr )+1). We mathematically repre-

sent the space of node bag mappings as follows. We denote
by M (Bt ) = [Bt → VS ] the set of all functions from Bt to VS ,
i.e. mV

t ∈ M (Bt ) maps all virtual nodes of Bt . Given a spe-
cific bag mapping mV

t ∈M (Bt ), a cost-optimal valid mapping
of the subgraph Gr [Bt ] = (Bt ,Er [Bt ]) induced by Bt , i.e.
Er [Bt ] = {(i, j ) ∈ Er | i, j ∈ Bt }, is computable in polynomial-time:

Lemma 3.4 (Computation of optimal induced mappings).
Given a node bag mapping mV

t ∈ M (Bt ), one can check in time
O (poly( |Bt |· |GS |)) if a valid edgemapping extensionmE

t exists, such
that mt = (mV

t ,m
E
t ) is a valid mapping of the induced subgraph

Gr [Bt ]. Furthermore, if such an induced valid mapping exists, the
least cost one can be computed in time O (poly( |Bt | · |GS |)).

Proof. The validity of the given node mapping mV
t can be

checked by testing whether mV
t (i ) ∈ V r,i

S holds for each virtual
node i ∈ Bt . As the node mappings are fixed, one can compute a
shortest valid path for each edge (i, j ) ∈ Er [Bt ] by applying e.g.
Dijkstra’s algorithm, albeit only considering substrate edges con-
tained in Er,i, jS . If valid paths exist for all induced edges Er [Bt ]
under the node mappingmV

t , a cost-optimal edge mappingmE
t is

obtained and otherwise no valid mapping can exist. !
Besides this, we employ the following facts for our algorithm.
Fact 3.5 ([6]). Let N (t ) ⊆ VT denote the neighboring tree nodes

of t ∈ VT . For any tree node t ∈ VT and any pair t1, t2 ∈ N (t ) of
neighbors of t with t1 ! t2, the following holds: (Bt1 ∩ Bt2 ) \ Bt = ∅.

Fact 3.6 ([6]). Any tree decomposition can be transformed into a
small one for which Bt1 ! Bt2 holds for all t1, t2 ∈ VT with t1 ! t2.
For any small tree decomposition |VT | = |Br | ≤ |Vr | holds.

The first fact states that node bags separate neighboring node
bags from each other, while the second allows to bound the size of
the tree |VT | by the number of original request nodes |Vr |.
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The following additional notation will be used throughout this
work. We employ Bt1∩t2 to denote the intersection of the corre-
sponding node bags, i.e. Bt1∩t2 = Bt1 ∩Bt2 . Given a node bag map-
pingmV

t , we denote by ⦉mV
t |V ′r ⦊ : V ′r → VS the restriction ofmV

t
to a subset V ′r ⊆ Bt , such that ⦉mV

t |V ′r ⦊(i ) =mV
t (i ) for i ∈ V ′r .

4 DYNAMIC PROGRAM DynVMP
We now present the XP-algorithm DynVMP for solving the VMP.
We first consider the VMP without latency constraints and after-
wards present a minor extension to cater for latencies. The algo-
rithm uses the tree decomposition Tr of the request graph and ap-
plies dynamic programming: starting from the leaves of the tree de-
composition, (partial) cost-optimal valid mappings are constructed
bottom-up. This is facilitated by Lemma 3.4. Starting at the leaves,
these cost-optimal valid mappings are combined in a bottom-up
fashion. Concretely, the algorithm stores for each tree node t ∈ VT
and each node bag mapping mV

t ∈ M (Bt ) the optimal mapping
costs in the table C[t][mV

t ] (infinite costs indicate infeasibility) to-
gether with the node mappings in tableM[t][mV

t ] (see Lines 2-4).
The nodes of the tree decomposition are then traversed bottom-

up (post-order traversal). Considering a specific tree node t ∈ VT
with node bag Bt , all node bagmappingsmV

t ∈M (Bt ) are enumer-
ated (Line 7). Only if the induced mapping is valid, the mapping is
considered and otherwise the corresponding cost C[t][mV

t ] stays
infinite (indicating invalidity). Considering leaves, the (induced)
mapping costs of locally valid mappings can be readily computed
using Lemma 3.4 by the InducedCost function. For nodes hav-
ing children, the current mapping mV

t is sought to be extended
as cheaply as possible. To this end, all suitable child mappings
mV
tc ∈ M (Btc ) agreeing with the current mapping mV

t are con-
sidered and according to the cost-optimal one the mapping table
M[t][mV

t ] is updated. Importantly, the different children will never
set a mapping of a virtual node i ∈ Vr twice by Fact 3.5: a request
node i is either contained in only a single child bag or in multi-
ple; however, if it is contained in multiple bags, then it must be
contained in Bt . Accordingly, if i ∈ Bt holds, then the mapping
of i is already explicitly set bymV

t and the child mappings cannot
disagree on the mapping of i , as only matching mappings were
selected in Line 12. Only if for all children valid mappings exist,
the cost is updated and otherwise the mapping is considered to
be invalid (cf. Lines 23 and 24). Having processed the whole tree,
the optimal valid mapping is retrieved at the root node t̂r or ⊥ is
returned to indicate that none exists.

Theorem 4.1. The DynVMP algorithm correctly determines
whether a valid mapping exists and if so, returns a cost-optimal one.
Its runtime is bounded by O ( |Vr |3 · |VS |2·tw(Tr )+3).

Proof. By the above description of the algorithm, the algorithm
returns an optimal valid mapping, if one exists. With respect to
the runtime, we first note that |VT | ≤ |Vr | holds when considering
small tree decompositions (cf. Fact 3.6). The pre-computation of
all shortest valid paths can be implemented in time O ( |Vr |2 · |VS |3)
by applying Dijkstra’s algorithm for each of the O ( |Vr |2) request
edges for each potential substrate start node. On the other hand,
the runtime of the Lines 12 to 22 dominate the main algorithm’s
runtime. Here, for each of the at most |Vr | tree nodes at most
|VS |tw(Tr )+1 manymappingsmV

t are considered, for which again at

Algorithm 1: DynVMP: Computing Optimal Valid Mappings
Input : substrate GS , request Gr , tree decomposition Tr
Output :valid mapping of minimal cost or ⊥ if none exists

1 PrecomputeShortestValidPaths(Gr ,GS)
2 foreach t ∈ VT do // initialize tables

3 foreachmV
t ∈M (Bt ) do

4 C[t][mV
t ]← ∞ andM[t][mV

t ]← (i 0→ ⊥ | i ∈ Vr \ Bt )

5 set QT ← PostOrderTraversal(Tr , t̂r )
6 for t ∈ QT do // traverse tree in post-order

7 formV
t ∈M (Bt ) do // consider node bag mappings

8 if InducedMappingLocallyValid(mV
t ) then

9 set children_valid ← True
10 for (t , tc) ∈ δ+ (t ) do // find best child mapping m̂V

tc
11 set m̂V

tc ← ⊥

12 for
(

mV
tc ∈M (Btc ) with

⦉mV
tc |Btc∩t⦊ = ⦉mV

t |Btc∩t⦊

)
do

13 if m̂V
tc = ⊥ or C[tc][mV

tc ] < C[tc][m̂
V
tc ] then

14 m̂V
tc ←mV

tc

15 if m̂V
tc ! ⊥ then // if valid mapping exists

16 for i ∈ Vr \ Bt do // as mV
t fixes Bt mapping

17 if i ∈ Btc then // as mV
tc maps i

18 M[t][mV
t ](i ) ← m̂V

tc (i )

19 else if M[tc][m̂V
tc ](i ) ! ⊥ then

20 M[t][mV
t ](i ) ← M[tc][m̂V

tc ](i )
21 else // induced valid mapping cannot exist

22 set children_valid ← False and exit for-loop

23 if children_valid then
24 C[t][mV

t ]← InducedCost(mV
t ∪M[t][mV

t ])

25 choose m̂V
t̂r
∈M (Bt̂r ) s.t. ĉ ← C[t̂r ][m̂

V
t̂r
] is minimal

26 if ĉ < ∞ then return InducedMapping(m̂V
t̂r
∪M[t̂r ][m̂V

t̂r
])

27 else return ⊥

most |Vr | · |VS |tw(Tr )+1 many mappings of its children must be con-
sidered while adapting the mappings in Lines 17 to 20 may again
take O ( |Vr |) time, yielding the claimed overall runtime. !

Lastly, we show that the DynVMP algorithm can be used to
approximate the cost of valid mappings under latency constraints.
While computing minimum-cost latency-constrained shortest
paths (LCSP) is itself an NP-hard problem, a fully polynomial-
time approximation scheme (FPTAS) exists:

Theorem 4.2 (LCSP FPTAS, Lorenz & Raz [9]). For any ε ′ > 0,
a (1 + ε ′)-optimal path satisfying the latency bound can be computed
in O

(
|ES | · |VS | · (log log |VS | + 1/ε ′)

)
= timeLCSP (ε ′).

The FPTAS for the LCSP can be used in the DynVMP algorithm
to compute approximate latency respecting valid paths in Line 1.
As each computed path is (1 + ε ′)-optimal, the resulting mapping
is also (1 + ε ′)-optimal and we obtain the following result:

Theorem 4.3. Using the LCSP FPTAS, the DynVMP algorithm
finds a (1 + ε ′)-optimal valid mapping, if one exists. Its runtime is
bounded by O ( |Vr |2 · ( |Vr | · |VS |2·tw(Tr )+2 + timeLCSP (ε ′))).
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5 XP-APPROXIMATIONS FOR THE VNEP
We now present a novel Linear Programming (LP) approach for
the VNEP that allows us to generalize the previously obtained ap-
proximation result for the offline VNEP of [11]. Our approach also
enables the first approximations under latency constraints.

Concretely, in [11] it was shown that approximations can be ob-
tained if the fractional offline VNEP can be solved. In the fractional
variant several valid mappings can be selected and weighed to ob-
tain a convex combination of mappings. The LP Formulation 1 nat-
urally models this by enumerating all valid mappings. Using ran-
domized rounding (see Algorithm 2), the following was obtained:

Theorem 5.1 (VNEP Approximation for Cacti [11]). Algo-
rithm 2 returns an (α , β,γ )-approximate solution for the VNEP of
at least an α = 1/3 fraction of the optimal profit, and allocations
on nodes and edges within factors of β and γ of the original capaci-
ties, respectively, with high probability, where β ,γ ≥ 1 are defined as

β =1 + ε ·
√
2 · ∆(VS ) · log( |VS |) and γ=1 + ε ·

√
2 · ∆(ES ) · log( |ES |)

with ∆(X ) = maxx ∈X
∑
r ∈R:dmax (r,x )>0 (Amax (r ,x )/dmax (r ,x ))2

being the maximal sum of squared maximal allocation-to-capacity
ratios over the resource setX and the maximum demand-to-capacity
ratio ε = maxr ∈R,x ∈GS dmax (r ,x )/dS (x ).

In the following, we show how the LP Formulation 1 can
be solved efficiently for arbitrary request graphs by using the
DynVMP algorithm. While the primal formulation uses exponen-
tially many variables, its dual (cf. Formulation 2) uses a polynomial
number of variables λ⃗ (corresponding to Constraint 2) and µ⃗ (cor-
responding to Constraint 3) while employing exponentially many
constraints. However, it is known that such LP formulations can
be solved in polynomial-time, as long as violated constraints can
be identified in polynomial-time by a ‘separation oracle’ [7].

Considering the case without latencies first, Constraints 6 can
be separated using DynVMP as follows. First, we interpret the µ⃗
variables as resource costs cS,µ : GS → R≥0 with cS,µ (x ) = µx .
Accordingly, the mapping cost cS,µ (mr ) of a valid mapping mr
equals ∑

x ∈GS µx · A(mr ,x ), i.e. the second term of the left-hand
side of Constraint 6. Accordingly, the DynVMP algorithm can be
used to compute cost-optimal mappings m̂r for each request r ∈ R.
If cS,µ (m̂r ) ≥ br − λr holds, all valid mappings of request r satisfy
Constraint 6. On the other hand, if cS,µ (m̂r ) < br − λr holds, then
the constraint corresponding to the mapping m̂r is added to the
Linear Program 2. By initializing λ⃗ = µ⃗ = 0⃗ and iteratively sepa-
rating the violated constraints as long as one exists, an optimal LP
solution can be computed. For practical applications, the follow-
ing lemma is helpful in terminating the separation process once a
solution of sufficient quality has been found:

Lemma 5.2. Let µ⃗, λ⃗ be the dual variables of a primal LP solution
and let ϵ > 0. If cS,µ (mr ) · (1 + ϵ ) ≥ br − λr holds for allmr ∈Mr
and each r ∈ R , then the primal LP solution is (1 + ϵ )-optimal.

Proof. This follows fromweak duality [7], as scaling the µ⃗ vari-
ables by a factor of (1 + ϵ ) yields a feasible dual solution while
increasing the objective by at most a factor (1 + ϵ ). !

As the separation of violated constraints equals the introduction
of new variables (‘columns’) in the primal, this approach is gener-
ally referred to as ‘column generation’. As the runtime of these ap-
proaches is polynomially bounded in the runtime of the separation
oracle [7], the following XP-result is obtained.

Formulation 1: Primal Enumerative LP for the Offline VNEP

max
∑

r ∈R,mk
r ∈Mr

f kr · br (1)
∑

mk
r ∈Mr

f kr ≤ 1 ∀r ∈ R (2)
∑

r ∈R,mk
r ∈Mr

f kr · A(mk
r ,x )≤ dS (x ) ∀x ∈ GS (3)

f kr ∈ [0, 1] ∀r ∈ R,mk
r ∈Mr (4)

Formulation 2: Dual Enumerative LP for the Offline VNEP

min
∑

r ∈R λr +
∑

x ∈GS
µx · dS (x ) (5)

λr +
∑

x ∈GS
µx · A(mk

r ,x )≥ br ∀r ∈ R,mk
r ∈Mr (6)

λr ≥ 0 ∀r ∈ R (7)
µx ≥ 0 ∀x ∈ GS (8)

Algorithm 2: Randomized Rounding Approximation (cf. [11])
1 foreach r ∈ R do // preprocess requests

2 compute solution to LP Formulation 1 for request r
3 remove r from R if solution’s profit is less than br
4 compute solution to LP Formulation 1 for all requests R
5 do // perform randomized rounding

6 foreach r ∈ R embed r usingmk
r with probability f kr

// request r is rejected with prob. 1 −∑
k f kr

7 while solution is not (α , β ,γ )-approximate

Theorem 5.3. LP Formulations 1 and 2 can be solved in time
O

(
poly

(∑
r ∈R |Vr |3 · |VS |2·tw(Tr )+3

))
by using DynVMP as oracle.

As the approximation framework developed in [11] only de-
pends on the ability to solve the LP Formulation 1 optimally, the ap-
proximation result readily carries over to arbitrary request graphs.

Theorem 5.4. Using the DynVMP algorithm to solve LP Formu-
lation 1 and applying the rounding procedure of [11], a tri-criteria
(α , β ,γ )-(XP-)approximation for the offline VNEP is obtained (with
α , β ,γ as defined in Theorem 5.1), with high probability. Accordingly,
polynomial-time approximations are obtained when considering re-
quests of bounded treewidth, as for example outerplanar graphs.

We note that parametrized approximations are indeed the best
one can hope for, as the VNEP isNP-complete for planar request
graphs [10] and – unless P =NP holds – no polynomial-time al-
gorithms can exist. Furthermore, we note that planar graphs have
unbounded treewidth: a k × k grid has a treewidth of k [6].

Lastly, we turn towards approximations under latency con-
straints. In this case, the Constraints 6 can only be separated ap-
proximatively (cf. Theorem 4.3): for each request r ∈ R a (1 + ε ′)-
optimal mapping m̃r is computed and respective columns are
added as long as cS,µ (m̃r ) < br − λr holds. After the separation
process, some of the Constraints 6 might still be violated. In fact,
only cS,µ (mk

r ) · (1+ ε ′) ≥ br −λr holds for all mappingsmk
r ∈Mr

and by Lemma 5.2 the respective solution is (1 + ε ′)-optimal.
To obtain an approximation, Algorithm 2 must be adapted to

this approximative setting as follows. In Line 3, a request r is only
removed when their achieved profit is less than br /(1+ ε ′), as this
indicates that the request can never be fully embedded. Further-
more, the analysis of [11] requires that the LP’s profit b̂ is larger
than bmax = maxr ∈R br . First, note that bmax/(1 + ε ′) ≤ b̂ always
holds [11]. Accordingly, in the case that bmax/(1 + ε ′) ≤ b̂ < bmax
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holds, an additional profit of bmax−b̂ must be ensured. This can be
achieved by adding a fractional embedding of the request rmax ∈ R
having the largest profit. In particular, given the initial LP compu-
tation for rmax of Line 2, the returned solution can be scaled to fully
embed rmax while exceeding capacities by at most a factor (1+ ε ′).
Adding a (bmax − b̂)/bmax ≤ ε ′/(1+ ε ′) fraction of this embedding
to LP solution of Line 4, the condition b̂ ≥ bmax holds while the LP
solution exceeds capacities by at most a factor (1 + ε ′). Rounding
this solution as before, the following approximation is obtained:

Theorem 5.5. For the offline VNEP with latency constraints,
a tri-criteria (α/(1 + ε ′), β + ε ′,γ + ε ′)-(XP-)approximation is ob-
tained for any ε ′ > 0 and α , β , γ as defined in Theorem 5.1,
with high probability. The runtime of the algorithm lies in
O

(
poly

(∑
r ∈R |Vr |2 ·

(
|Vr | · |VS |2·tw(Tr )+2 + timeLCSP (ε ′)

)))
.

6 RANDOMIZED ROUNDING HEURISTICS
The approximations come at the cost of violating resource capac-
ities. However, randomized rounding can be easily adapted to ob-
tain XP-heuristics not violating resource capacities. In [11] a first
heuristic was proposed, which works as Algorithm 2 but discards
selected mappings whose addition would exceed capacities.

As an improvement over this heuristic and facilitated by the col-
umn generation approach, we propose a novel rounding heuris-
tic that a priori removes mappings whose addition would lead to
resource violations and recomputes the LP before applying the
rounding (see Algorithm 3). Therefore, the addition of any rounded
mapping is feasible while also better guiding the rounding process
by providing currently optimal rounding probabilities. Specifically,
in Lines 4 and 5 first all infeasible mappings are ‘removed’ by set-
ting the respective LP variables to 0. To reflect made rounding de-
cisions in the LP, either the respective mapping variable is set to 1
(Line 9), or all mappings of a rejected request are disabled (Line 11).

Besides this novel rounding heuristic, we also consider different
orders to round request mappings in: randomized (R) as proposed
in [11], and either sorting the requests in descending fashion by
their static (S) profits or their actual achieved profit (A) in the LP.
Algorithm 3: Heuristical Rounding with LP Recomputation
1 compute solution to LP 1 (using column generation)
2 set sol← ∅ and R ′ ← R
3 foreach r ∈ R do
4 foreach r ′ ∈ R ′ and eachmk

r ′ ∈Mr ′ do
5 if sol ∪ {mk

r } is infeasible then set f kr ′ = 0
6 resolve Linear Program (without column generation)
7 choose m̂r ←mk

r with probability f kr
8 if m̂r ! ∅ then
9 set sol← sol∪ {m̂r } and f kr = 1 // accept request r

10 else
11 set f kr = 0 for allmk

r ∈Mr // reject request r

12 R ′ ← R \ {r }
13 return sol

7 EVALUATION
In this section we present two types of evaluation to validate our
approach. Firstly, we present a study of the treewidth of random
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Figure 3: Study of the treewidth of random graphs using
Tamaki’s algorithm [12]. Note the logarithmic axes.

graphs to grasp for which graphs our approach may be reason-
able. Secondly, we generate a large set of offline VNEP instances in
accordance with the methodology presented in [11] and compare
the performance of the randomized rounding heuristics to the per-
formance of the well-known ViNE heuristics [3]. All experiments
have been conducted on a server equipped with 4 Intel XEON E5-
4627v3 CPUs and 256 GB RAM. Our Python 2.7 source code, which
uses Gurobi 8.0 to solve the LPs, is publicly available1.

Qualitative and Quantitative Analysis of the Treewidth. We have
generated 1,200 undirected graphs with {5, . . . , 45} nodes and edge
creation probabilities in the range of {0.05, 0.06, . . . , 0.95}, yield-
ing 4.47M graphs overall. We have then run the exact algorithm
by Tamaki [12] to compute the optimal treewidth. Our results are
presented in Figure 3. Notably, the (average) treewidth is less than
6 for most graphs with fewer than 15 nodes and a connection prob-
ability of less than 50%. The runtime for computing the tree decom-
positions of width less than 10 lies vastly below two seconds with a
median computation time of only 200ms, enabling the application
of our approach in the first place.

Instance Generation. We have generated 6,000 offline VNEP in-
stances (without latencies) according to the methodology pre-
sented in [11], also using the same 40-node substrate topology
GÉANT from the Topology Zoo. Instances of {40, 60, 80, 100} re-
quests are generated having a treewidth of exactly {1, 2, 3, 4}. The
number of nodes per request is drawn uniformly from {5, . . . , 15}.
For treewidth 1, i.e. trees, the request graphs are generated ran-
domly by adding edges until the graph is a tree (discarding edges
creating cycles). For generating graphs of treewidth 2, 3, 4, we em-
ploy the graphs generated to evaluate the performance of Tamaki’s
algorithm. To this end we have stored all generated undirected
graphs and uniformly at random select graphs of the respective
treewidth and number of nodes. As directed requests are consid-
ered, edge orientations are chosen uniformly at random.

As in [11] the request demands are drawn from an ex-
ponential distribution according to node resource factors
(NRF) {0.2, 0.4, 0.6, 0.8, 1.0} and edge resource factors (ERF)
{0.25, 0.5, 1.0, 2.0, 4.0}. Intuitively, a NRF of 0.6 implies that the
sum of generated node resource demands equals 60% of the
available substrate node resources, while an ERF of 0.5 implies
that if each virtual edge spans exactly 0.5 substrate edges, then
the average edge utilization equals exactly 100%. As in [11], the
mapping of virtual nodes is constrained to 25% of substrate nodes
and the profits of requests are set to equal the (optimal) minimum

1https://github.com/vnep-approx/evaluation-acm-ccr-2019
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embedding costs. For each parameter combination (number of
requests, treewidth, NRF, ERF) 15 instances are considered.

Studied Algorithms and Implementation Details. We compare the
performance of the randomized rounding heuristics and the offline
ViNE heuristics for unsplittable edge embeddings [3]. The ViNE
algorithms use the Multi-Commodity Flow LP to guide the em-
bedding of single requests: node mappings are performed either
randomly or deterministically according to the LP node mapping
variables while request edges are embedded using shortest-paths.
Two different LP objectives were proposed in [3]: one minimizing
resource usage and another also performing load-balancing. For
the offline setting, the authors of [3] have proposed the window-
based heuristic (WiNE) that orders requests descendingly accord-
ing to their profits and greedily embeds each request using ViNE.

Our DynVMP implementation employs several optimizations.
Most importantly, cost computations are realized usingmatrixmul-
tiplications. For the novel LP, the separation is terminated upon
1.001-optimality (cf. Lemma 5.2). For each randomized algorithm
several executions are considered: 20 for WiNE, 50 for randomized
rounding with recomputations and 500 without.

Results. We first report on the performance of the different algo-
rithms. In Figure 4 (left) the best and mean solution quality relative
to the maximum attainable LP profit is depicted. For WiNE, the
load-balancing (L) objective outperforms the cost (C) one. Consid-
ering the randomized rounding (RR) heuristics, the ones with re-
computations significantly outperform the ones without. Ordering
the requests according to the profit (S / A) yields the best solutions.

As we are mostly interested in the potential improvement over
greedy heuristics, the center and right plots of Figure 4 compare
the best solution computed by any WiNE execution to the best so-
lution of any randomized rounding execution. The mean relative

improvement over WiNE significantly depends on the number of
requests and the edge resource factor: when edge resources are
scarce (ERFs 0.25 and 0.5) WiNE performs better, while for ERFs
1.0, 2.0, and 4.0 randomized rounding consistently yields better so-
lutions (86.7% of scenarios). Evenmore, for 80 and 100 requests and
ERFs of 1.0 and 2.0, randomized rounding finds better solutions in
99.9% of the scenarios, improving the best WiNE solution by more
than 30% in 57.5% of the scenarios. The performance drop for low
ERFs may be due to fewer generated mappings being feasible.

The runtime of the column generation LP lies in the order of
100 seconds for treewidths below 3 and several hundred seconds
for treewidth 4 (see Figure 5). The runtime of the recomputation
heuristics mainly ranges between few seconds and 60 seconds (see
Figure 5). The average runtimes of the rounding without recompu-
tations and the WiNE heuristics was 0.03s and 6.38s, respectively.

8 CONCLUSION
This work has presented the first XP-approximations for the
VNEP for arbitrary request graphs and allowing for edge latencies.
As shown in the evaluation, applying randomized rounding heuris-
tics can yield significantly better solutions in practice compared to
greedy heuristics while coming at the cost of higher runtimes.
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