
Learning IP Network Representations
Mingda Li

University of California
Los Angeles, CA

lmd1993@g.ucla.edu

Cristian Lumezanu
NEC Laboratories America

Princeton, NJ
lume@nec-labs.com

Bo Zong
NEC Laboratories America

Princeton, NJ
bzong@nec-labs.com

Haifeng Chen
NEC Laboratories America

Princeton, NJ
haifeng@nec-labs.com

This is a slightly revised version of the paper "Deep Learning IP Network Representations", initially presented at the SIGCOMM’18
Workshop on Big Data Analytics and Machine Learning for Data Communication Networks (Big-DAMA).

ABSTRACT
We present DIP, a deep learning based framework to learn struc-

tural properties of the Internet, such as node clustering or distance
between nodes. Existing embedding-based approaches use linear
algorithms on a single source of data, such as latency or hop count
information, to approximate the position of a node in the Inter-
net. In contrast, DIP computes low-dimensional representations
of nodes that preserve structural properties and non-linear rela-
tionships across multiple, heterogeneous sources of structural in-
formation, such as IP, routing, and distance information. Using a
large real-world data set, we show that DIP learns representations
that preserve the real-world clustering of the associated nodes and
predicts distance between them more than 30% better than a mean-
based approach. Furthermore, DIP accurately imputes hop count
distance to unknown hosts (i.e., not used in training) given only
their IP addresses and routable prefixes. Our framework is extensi-
ble to new data sources and applicable to a wide range of problems
in network monitoring and security.

CCS CONCEPTS
• Networks → Network structure; Network security; • Com-

puting methodologies→ Machine learning;

KEYWORDS
deep learning, network, structure, neural networks, embedding

1 INTRODUCTION
The ability to map, analyze, and understand the structure of the

Internet helps network management and operations by revealing
opportunities for improvement or potential design flaws. For ex-
ample, accurately predicting the closest server is critical in peer
selection and load balancing [15]. Knowing how remote IPs are
clustered can help diagnose anomalous events such as spoofing
attacks [10]. A holistic view of the network and its structure is
essential towards achieving the vision of self-driving networks [9].

Most previous attempts to uncover the Internet structure relying
on active probing from multiple vantage points using tools such as
traceroute and ping [14, 21]. Such techniques provide fine-grained
introspection (i.e., can measure specific properties in specific parts

of the network, such as the latency of a path) but pose a significant
cost in terms of network overhead.

In contrast, embedding-based approaches use fewer, strategic
measurements [4, 6] or passive observations on network traffic [8]
to learn vector representations for the network end-hosts in a low-
dimensional space. The representations approximate the positions
of hosts in the Internet and are used to recover structural network
properties, such as distance between nodes or clustering of nodes.
However, the complexity of the Internet and the sparse input data
make it difficult to compute accurate representations. Oftentimes,
embedding approaches rely on additional data sources, which can-
not be easily used in the embedding process, to refine and tune the
final embeddings. For example, several embedding methods build
representations based on distance-based metrics, such as latency
or hop count, and then refine (or even replace) the final represen-
tations using additional probes or static information such as AS
membership or routing information [4, 7].

The emergence of deep learning as a powerful tool to extract
hidden features in data calls for revisiting the problem of learning
network representations through embedding. In particular, deep
learning techniques provide two key benefits. First, they allow
multiple heterogeneous sources of information as input, thereby
identifying more accurately the relationships between multiple
sources of data that jointly contribute to a specific structural prop-
erty [11, 17, 23]. Second, deep neuron networks are extensible and
can easily incorporate additional sources of information by attach-
ing more neurons, network layers, or network branches [23]. One
can start with a model trained on the original components and re-
train it using only the newly added parts or data sources [5]. This
makes it easier for network operators to deploy, apply, or update
neural network based models.

We propose DIP, a deep learning based framework to learn the
structure of the Internet. DIP is a ten-layer neural network1 that
computes a low-dimensional vector representation for any node2
in the Internet given only its IP address and routable prefix. DIP

1To avoid confusion and unless explicitly stated otherwise, we use network or Internet
to refer to the physical IP network and neural network to refer to the neural network
we design to learn the structural properties of the physical network
2We use node or (end-)host to denote any computer connected to the Internet and
assigned an IP address.

ACM SIGCOMM Computer Communication Review Volume 48 Issue 5, October 2018

preserves both local and global structure: clustered nodes have sim-
ilar representations and the distance between two representations
approximates the hop count between the associated nodes.

We train our neural network using three heterogeneous data sets:
hop count distances between Internet nodes, the 32 bits IP address
and inter-domain routable prefix information for each node. A key
insight to train DIP is to first compute representations based on the IP
and routing information, thereby recovering structural information
hidden in the IP values, and refine them using a distance-based
optimization. As the size of the routable prefix varies by IP, we first
normalize the IP and prefix data by representing an IPv4 address on
64, rather than, 32 bits. To capture structural information encoded
in the IP address value, we feed the eight bytes of the normalized IP
sequentially at each of the first eight layers of the neural network.
We then use the last two layers to get the hop count matrix and
optimize the embedding distance prediction. With a trained DIP,
we can estimate distance between any two Internet hosts as long
as we have their IPs, even if they are not part of the training data.

Results on large real-world data sets of hop counts between
thousands of IP addresses and 95 geographically distributed servers
show that we can predict hop count distance between known hosts
(i.e., whose IP address were used in the training) with an absolute
error of around 2 hops and over 30% better than a mean-based
method. We infer the distance between unknown IPs (i.e., not ap-
pearing in training data) with a small loss in accuracy compared to
known IPs. In addition, the representations learned by DIP preserve
the real-world clustering of the associated hosts. The accuracy of
our model increases when we increase the training data set.

While our results are preliminary, they offer us a glimpse of
the power of deep learning in recovering structural properties of
the Internet from sparse data. DIP is the first framework that can
estimate accurately the distance to any Internet host given only its
IP address and routable prefix without any distance data.

2 BACKGROUND AND RELATEDWORK
What is structure?Many properties can make up the structure

of the Internet: connectivity between IPs, routers, or networks;
distance-based metrics such as hop count or latency; similarity-
based metrics such as the set of one’s neighbors in the connectivity
graph; path-based properties such as the sequence of routers on a
path. Here, we focus on two specific properties that define both the
local and the global structure of a network: clustering of end-hosts
and hop count based distance between end-hosts.

Network coordinate systems learn vector representations for
participating nodes such that the position of the node in the em-
bedding approximates its position in the Internet. Most coordinate
systems build embeddings using a single source of structural data:
latency measurements among nodes or to predetermined landmark
servers [3, 4, 18, 19, 24] or hop count information from passive traf-
fic observations [6, 7]. Latency and hop count data is often sparse
and cannot always be accurately embedded in metric spaces. To
overcome these issues, several approaches use out-of-band infor-
mation, such as location [4] or routing [7] data, or perform active
measurements [6] to impute the missing data and detect clusters or
distances. Unlike them, we propose to train our embedding jointly
using distances, routing information and host IP values, thereby

learning hidden structural features encoded in a node’s IPv4 ad-
dress. With a trained model, we are able to embed and find the hop
count to any IP, without the participation of its host.

Deep neural networks consist of multiple layers of intercon-
nected neurons [13]. A neuron aggregates multiple input values
using local weights and biases, applies an activation function, and
produces one or more numerical values as output. Given a training
task, one can define an objective function to evaluate the output
of the entire neural network, e.g., prediction error. Using gradient-
based back-propagation algorithms to optimize the objective func-
tion [12], neural networks automatically tune theweights and biases
of each neuron to achieve a better performance.

3 LEARNING NETWORK REPRESENTATIONS
DIP learns an embedding model that accurately reflects the struc-

ture of the Internet, i.e., preserves node clustering and distances
between nodes. The goal of learning is to minimize the prediction
error for the distance between any two nodes. The learned model is
defined by the structure of the neural network and the final values
for the weights and biases of each neuron. Next, we describe the
data used in learning and how we construct the neural network.

3.1 Data sources
IP addresses and routing information. The IP address of a

host provides a coarse indication of the location of the host in
the Internet. To make routing scalable and fast, IP addresses are
assigned hierarchically and divided into a network (or routable) part
and a host (or local) part. The routable part, usually expressed by
an integer representing the number of bits (also called prefix), tells
routers how to route the packet through the core of the Internet
towards the destination network. Intuitively, IPs with the same
routable prefix share a path towards them through the Internet
core and are more likely to be close to each other.

Hop counts. The hop count between two hosts represents the
number of routers on the default path between hosts. We use hop
count, rather than latency, to measure the distance between two
hosts, as it can be easily extracted from the TTL value of a network
packet [10], without active measurements. In Section 5, we discuss
how to extend the model using latency measurements. Our hop
count matrix is asymmetric and very sparse; it does not contain
hop counts between all IPs.

3.2 IP transformation
The key idea of our work is to use both local (IPs and routing

information) and global (hop counts) structural information to
guide the embedding of network nodes. By utilizing deep learning
for embedding, we can identify and use hidden features encoded in
the IP address of a given node. We perform several transformations
on the input, guided by observations on real network data.

IP normalization. Because the routable information is tied to
an IP address, we combine the IP and prefix values when feeding
them to the neural network. To keep the size of the input constant
and independent on the prefix size, we generate a normalized IP
address for each regular IP. The process of normalization is depicted
in Figure 2. We divide each IP into the network and the host parts.
We pad the end of the network part and the beginning of the host

ACM SIGCOMM Computer Communication Review Volume 48 Issue 5, October 2018

Figure 1: Cumulative distribution of (left) hop counts between pairs of host-server IPs that share the first, first two, or first
three bytes, and (right) standard deviation of hop count distribution among groups of IPs sharing the first, first two, or first
three bytes. The more similar two IPs are, the closer they are and the more similar their distances to the same third IP are.

192.168.133.130/20 = 11000000.10101000.1000 0101.10000010
network (20b) host (12b)

11000000.10101000.10000000.00000000.00000000.00000000.00000101.10000010
normalized network (32b) normalized host (32b)

B0 B1 B2 B3 B4 B5 B6 B7

Figure 2: Generating a normalized IP address for
192.168.133.130/20.

part with zero to obtain two four-byte values. We concatenate the
values and get the eight bytes normalized IP. Further, for easier
processing, we represent each byte of the input in one-hot vector
format (256 dimensions), e.g., a one and the rest are 0s, where the
1’s position is the value of the byte (0 to 255).

Sequential feeding. IP addresses are assigned hierarchically
and encode structural information of the network. To better under-
stand how the hierarchical assignment affects node clustering, we
perform two experiments on a data set of hop counts between 95
geographically distributed servers and ten million IP addresses of
end hosts. Section 4.1 describes the data in more detail.

First, we group all pairs of host-server IPs according to whether
they share (within the pair) the first byte, first two bytes, or first
three bytes. We show the all-to-all hop counts between pairs in
each of the three groups in Figure 1(left). The more similar two
IP addresses are, the closer they are in terms of number of hops.
Second, we group separately hosts and servers according to whether
they share the first one, two, or three bytes and generate the hop
count distribution for each pair of host-server groups that share
the same prefix. We present the standard deviation for each pair
in Figure 1(right). The smaller the standard deviation is, the more
similar the distances are. This means that the more similar two IPs
are, the more likely they have the same hop count to another node.

As shown in Figure 1, an IP address can help learn node repre-
sentations that capture the network structure. The more bytes of an

IP address we know, the better we can constrain the representation
we assign to it. In addition, the more significant bytes of an IP
address have a higher influence on the position of the associated
host relative to other hosts. Therefore, the key is to capture the
sequential correlation among the bytes of an IP address.

3.3 Network construction
Driven by the insight gained in the previous section, we develop

DIP, a deep neural network that computes vector representations
of network hosts based on their IP addresses and the hop counts to
other hosts. The design of DIP, depicted in figure 3, is similar to that
of a recurrent neural network [16], where new data is processed in
the context provided by previous data (e.g., like processing natural
language). We explain the details below. Even though the figure
and our explanation refer to the input as one-hot vectors (e.g., a
normalized IP is represented as a vector of size 8x256=2,048), in
reality the inputs are matrices (i.e., the number of IP addresses times
2,048). Because our hop count data (see Section 4.1) is between
separate end-hosts (sources) and servers (destinations) and because
distances in the Internet are not always symmetric, we choose to
feed the source and destination IPs separately in the neural network.

Intermediate IP representation. As mentioned earlier, to get
the most out of the format and value of an IP address towards
building a representative embedding for its host, we should treat
each byte separately. The more significant bytes can provide a
context for how to interpret the less significant bytes. Thus, we
choose to input each byte of the normalized IP (a 256-dimension
one-hot vector Bi ∈{0, ...,7}256×1) separately at each layer of the network.
The input of layer i is the concatenation of byte i with the output
of the previous layer (except for the first layer). This

Input =

{
i = 0 Bi=0256×1
i ∈ {1, ..., 7} concat(f i−1d×1,B

i
256×1)

(1)

where d is the dimension of the final IP representation and concat
represents the vector concatenation operation.

ACM SIGCOMM Computer Communication Review Volume 48 Issue 5, October 2018

||rh - rs||2
estimated
hop count

real
hop count

cost

f

B1B0

f

B7

f

host
IP
representation

f

B1B0

f

B7

f

server
IP
representation

||D - D||2

rh

rs

D̂

D

normalized source (host) IP addresses

normalized destination (server) IP addresses real hop count matrix

f Neurons

^

Intermediate vector
Input vector

||….||

Bi Byte i of normalized IP address
(in one-hot vector format)

la
ye

r 0

la
ye

r 1

la
ye

r 7

la
ye

r 8

la
ye

r 9

Figure 3: The neural network used for training our embeddingmodel. The first eight layers receive the normalized IP addresses
as input and compute the IP representations. The ninth layer estimates the hop count between two IP addresses and the tenth
layer measures the model error. Elements in red are input. For simplicity we depict the input as one-dimensional vectors (one
normalized IP); in reality, all inputs are matrices.

At each layer, the activation function f is given by:

f i =


i = 0 so f tsiдn(wi=0

d×256 × Bi=0256×1 + b
i=0
d×1)

i ∈ {1, ..., 7}
so f tsiдn(wi ∈{1, ...,7}

d×(256+d) ×

concat(Bi ∈{1, ...,7}256×1 , f i−1d×1)+b
i ∈{1, ...,7}
d×1)

(2)

wherewi ∈{0, ...,7}
d×(256+d) are weights and bi ∈{0, ...,7}d×1) are biases; the soft-

sign function is f (x) = 1
1+ |x | . Initially, we assign random values to

all weights and zeros to all biases. We employ softsign as the activa-
tion function for the ease of training, as softsign is more robust to
saturation compared to other popular activation functions, such as
sigmoid and tanh.

Intermediate distance estimation. We use the first eight lay-
ers of the neural network to process each of the eight bytes of the
input normalized IP address. The output of the eighth layer is the
intermediate vector representation for each IP address in the input
data. We then use the last two layers to estimate how good the
representation is. First we compute the estimated hop counts given
by the current representation using an Euclidean distance. Given
two matrices Hh×d and Ss×d storing the intermediate representa-
tions for the h hosts and s servers separately, the estimated distance

matrix is:

Disth×s = Euclidean(Hh×d , Ss×d) (3)

Error reduction. Finally, we compare the estimated hop counts
with the real hop counts matrix Dh×s to compute the cost as the
mean difference of hop-counts. As the real hop count matrix is
sparse, we compare only the valid entries:

Cost =

∑h
i=1

∑s
j=1W

(i, j)(| |rHi∈{1, . .,h}
d×1 − r

Sj∈{1, . .,s }
d×1 | | − D(i, j))

count o f non − zero D(i, j) (4)

D(i, j) represents the value of the element at ith row and jth column
in matrixD. rHi∈{1, . .,h}

d×1 and rSj∈{1, . .,s }d×1 are rows in the matricesHh×d
and Ss×d , and correspond to the representation of a host or server
in the embedding space.W is a binary (0-1) matrix whose elements
are defined as:

W (i, j) =

{
0 D(i, j) == 0
1 D(i, j) , 0

(5)

To minimize the cost, we utilize the Adam algorithm, a gradient
descent based back-propagation method [12], which is able to au-
tomatically tune the learning rate during the training process.

ACM SIGCOMM Computer Communication Review Volume 48 Issue 5, October 2018

4 EVALUATION
4.1 Data and methodology

We use a large data set of network hop counts from the Ark
project [1]. The data contains hop count information from 95 ge-
ographically distributed servers to ten million IP addresses that
cover all routable prefixes in the Internet. We use data collected
by Ark during Jun 2015. For each IP in the data, we look up the
routable prefix and normalize it using the steps in Section 3.2. Due
to the cost of monitoring a large number of IPs, not all servers
have hop counts for all ten million IPs. Our hop count matrix is
incomplete and contains valid entries for only 29% of the pairs. We
extract IP prefix information from Routeviews data [20] and use a
default value of 24 for missing prefixes.

We build a prototype for DIP using TensorFlow. We train the
neural network using several smaller data sets obtained by ran-
domly sampling 1,000, 10,000, and 100,000 IPs from the original
data and keeping only the hop counts to them. Sampling increases
the sparsity of the data: less than 15% of the entries in the smaller
data sets are valid. We also vary the number of servers and the
dimensionality of the embedding space. Intuitively, having fewer
IPs or servers may not provide sufficient constraints to learn accu-
rate representations and lead to an underfit model. Increasing the
number of dimensions can reveal more hidden features, invisible at
lower dimensions, but may lead to overfitting. Each training session
has 2,500 iterations, i.e., passes through the neural network to up-
date the weights and biases. We use a GPU server with four 3.5GHz
quad-core Intel Xeon processors and 128GB of RAM. We generate
testing sets by randomly sampling the original data and preserving
the previously trained parameters for embedding arbitrary IP via
its address (e.g., the weights and biases of each byte/layer).

4.2 Embedding accuracy
Clustering. First, we assess how well DIP preserves the clus-

tering of hosts in the original IP space. For this, we group all IPs
first according to their routable prefix and then at random. For
each cluster we compute an embedding similarity metric, defined
as the ratio between the average distance between all pairs of IP
representations in the cluster and the maximum distance across all
clusters. The lower the similarity value, the closer to each other the
IPs of a cluster are in the embedding space. Figure 4(left) shows the
similarity distribution for prefix-based and random clusters. Each
IP representations is a 140-dimensional vector and computed after
training the network using 10,000 IP addresses and 95 servers. Our
embedding preserves the clustering of the original IP space well.

Distance prediction. To assess the quality of distance predic-
tion, we first look at previous embedding mechanisms. Network
coordinate approaches [4, 18] are not directly comparable as they
embed latencies between strategically chosen pairs of nodes, while
we rely on hop count information from passively observed traffic.
Eriksson et al. [7] propose a matrix factorization based algorithm
to predict hop count information but first build baseline representa-
tions of the monitoring servers using an all-to-all hop count matrix.
We lack complete hop count information among servers and build
our embedding directly from incomplete server-to-host distances.
Therefore, we compare against a mean estimation approach, where

DIP Mean
known IPs new IPs known IPs new IPs

Number of IPs
1,000 2.16 (1.86) 2.89 (2.38) 2.99 (2.44) 3.27 (2.51)
10,000 2.15 (1.79) 2.68 (2.34) 3.00 (2.40) 3.04 (2.43)
100,000 2.06 (1.76) 2.29 (2.00) 2.98 (2.40) 2.97 (2.40)
Number of servers

12 2.79 (2.25) 3.03 (2.47) 3.21 (2.54) 3.28 (2.62)
24 2.39(2.14) 2.60 (2.25) 2.90 (2.36) 2.97 (2.42)
48 2.34 (2.05) 2.75 (2.27) 2.99 (2.39) 3.02 (2.40)
95 2.15 (1.79) 2.68 (2.34) 3.00 (2.40) 3.04 (2.43)

Embedding dimension
110 2.28 (1.93) 2.80 (2.39) 3.00 (2.42) 3.04 (2.43)
140 2.15 (1.79) 2.68 (2.34) 3.00 (2.42) 3.04 (2.43)
170 2.19 (1.86) 2.72 (2.33) 3.00 (2.42) 3.04 (2.43)

Table 1: Absolute mean error (standard deviation between
brackets) of distance prediction of DIP and mean, for both
known and new IPs, when varying the number of IPs, the
number of servers and the embedding dimension. The de-
fault values are 10,000 IPs, 95 servers, and 140 dimensions.

we predict a host-to-server distance as the mean of all valid dis-
tances to the same server.

We look at how well our embedding estimates the hop count
value between a host and a server. We first consider only the IP
addresses used in the training process (i.e., known IPs). For this,
we train a model using 90% of all host-server pairs and use the
remaining 10% for testing. Figure 4(right) compares the absolute
error between estimated and real hop count for DIP and mean for
the 10,000 IPs data set on 140 dimensions. DIP predicts distances
with a mean absolute error of around two hops (23% mean relative
error) and reduces the error of the mean estimation by almost 30%.
Table 1 presents the average absolute error and standard deviation
for hop count estimation for embeddings trained with different
number of hosts, servers, or dimensions. As expected, increasing
the the number of IPs, servers, or the dimensionality reduces the
absolute error. We also trained models with parameters outside the
ranges presented in the table but found no improvement.

New IPs. An important feature of DIP is its ability to impute
hop count values to arbitrary nodes based on their IP address. New
IPs are IP addresses not used in the training process and that DIP
has never seen before. Figure 4 (right) and Table 1 show that DIP
approximates distance to new IPs with high accuracy. The distance
prediction error is only around half a hop more than that for known
IPs. To the best of our knowledge, DIP is the first framework to
predict hop counts to arbitrary hosts based only on the value of
their IP address and routable prefix and without any other domain
knowledge.

5 DISCUSSION
We discuss several future applications and directions of using

deep learning to understand and capture the Internet structure.
Extensions. An important benefit of using neural networks for

learning the structure of the Internet is that they can be extended

ACM SIGCOMM Computer Communication Review Volume 48 Issue 5, October 2018

Figure 4: (left) Cumulative distribution of cluster similarity, computed using IP vector representations, for prefix-based and
end-host random clusters; (right) Cumulative distributions of absolute distance estimation errors for DIP andmean. DIP rep-
resentations preserve real-world prefix-based clustering and predict distances accurately.

easily for other data sources. Similarly to previous embedding ap-
proaches [4, 18], we could use latency measurements instead of, or
in addition to, hop counts. This would require simply changing the
cost estimation part of the neural network (last two layers). While
gathering latency measurements is expensive as it introduces traffic
into the network, the ability of our approach to work with sparse
data can limit the cost necessary to obtain the measurements.

Furthermore, AS membership information could help find more
accurate representations as many ASes cover limited areas in the
network and provide a coarse indication of locality [7]. To add AS
membership information, we could either extend the shape of our
input vectors (by adding two bytes for AS number) or adapt the
cost estimation layers to use AS data in estimating error, similarly
to Eriksson et al. [7].

Applications. Building a model that accurately predicts struc-
tural properties of the Internet has several applications. Know-
ing the distance to remote IPs can help selecting a load balancing
server or an overlay peer more efficiently and without having to
perform expensive measurements. Understanding how nodes are
clustered can make the transmission of video or large files faster
by using close-by CDN nodes. DIP can be a passive defense mecha-
nism against IP spoofing attacks, where malicious users change the
source IP of attack packets to avoid identification and subvert au-
thentication. By comparing the predicted distance according to the
spoofed source IP to the real distance (extracted from a packet’s TTL
field), one could verify whether the packet is spoofed or not [10].

Limitations and futurework.Our current approach uses struc-
tural information embedded in the value of IP addresses, routing
data, and distances between nodes, but does not consider the ac-
tual physical links between nodes on the Internet (i.e., the Internet
physical topology). Adding topology would further constrain the
embedding, since it is well known that the Internet is not a metric
space and latency or hop count distances cannot always be em-
bedded in metric spaces [4]. We plan to extend our framework
using graph embedding algorithms to take advantage of physical
topology information [22].

While our preliminary experiments focused on accuracy, the
performance of building an embedding model is equally important.
Training a model with 100,000 addresses and 95 servers on our
16-core GPU server takes a few hours, indicating that we may need
to train models incrementally when resources are constrained [2].
For example, in a live deployment, we envision reconstructing our
model every few days to capture the changes in topology triggered
by the dynamic Internet. We are currently studying ways to incre-
mentally add or update models without rebuilding from scratch.

Because our data is sparse, not even the best embedding may be
able to recover all structural properties. While we show that our
results are reasonably accurate, even when we have less than 15% of
all distances available, getting more data is clearly helpful [7]. We
plan to use active monitoring techniques (e.g., traceroute) to collect
more information for the training phase. Knowing the IPs and
connectivity of routers in the network would make the training data
set richer and constrain the representation of end-hosts further.

6 CONCLUSIONS
We used deep learning to learn vector representations for nodes

in the Internet based on their IP address, routing information, and
a sparse hop count distance matrix. Deep learning helps uncover
hidden features in the input data and recover structural properties
of the Internet, such as node clusters or distances between nodes.
Our experiments on a large real-world data set show that our em-
beddings can recover most distances, even to arbitrary hosts, with
two hops absolute error, even when the training data is sparse.

REFERENCES
[1] Ark [n. d.]. Ark IPv4 Routed Topology Dataset. http://www.caida.org/data/

active/ipv4_routed_24_topology_dataset.xml. ([n. d.]).
[2] Lorenzo Bruzzone and D Fernandez Prieto. 1999. An incremental-learning neural

network for the classification of remote-sensing images. Pattern Recognition
Letters (1999).

[3] Manuel Costa, Miguel Castro, Antony Rowstron, and Peter Key. 2004. PIC:
Practical Internet Coordinates for Distance Estimation. In ICDCS.

[4] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. 2004. Vivaldi: a
decentralized network coordinate system. In SIGCOMM.

ACM SIGCOMM Computer Communication Review Volume 48 Issue 5, October 2018

http://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml
http://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml

[5] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pas-
cal Vincent, and Samy Bengio. 2010. Why does unsupervised pre-training help
deep learning? Journal of Machine Learning Research (2010).

[6] Brian Eriksson, Paul Barford, and Robert Nowak. 2008. Network Discovery from
Passive Measurements. In ACM Sigcomm.

[7] Brian Eriksson, Paul Barford, and Robert Nowak. 2009. Estimating Hop Distance
Between Arbitrary Host Pairs. In IEEE Infocom.

[8] Brian Eriksson, Paul Barford, Robert Nowak, and Mark Crovella. 2007. Learning
Network Structure from Passive Measurements. In IMC.

[9] Nick Feamster and Jennifer Rexford. 2017. Why (and How) Networks Should
Run Themselves. arXiv preprint arXiv:1710.11583 (2017).

[10] Cheng Jin, Haining Wang, and Kang G. Shin. 2003. Hop-count filtering: An
effective defense against spoofed DDoS traffic. In CCS.

[11] Andrej Karpathy and Li Fei-Fei. 2015. Deep visual-semantic alignments for
generating image descriptions. In CVPR.

[12] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[13] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature
(2015).

[14] K. Levchenko, A. Dhamdhere, B. Huffaker, k. claffy, M. Allman, and V. Paxson.
2017. PacketLab: A Universal Measurement Endpoint Interface. In Internet Mea-
surement Conference (IMC).

[15] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. 2017.
SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap Using Switch-
ing ASICs. In ACM Sigcomm.

[16] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khu-
danpur. 2010. Recurrent neural network based language model. In Interspeech.

[17] Tomas Mikolov, Quoc V Le, and Ilya Sutskever. 2013. Exploiting similarities
among languages for machine translation. arXiv preprint arXiv:1309.4168 (2013).

[18] T. S. Eugene Ng and Hui Zhang. 2002. Predicting Internet Network Distance
with Coordinates-Based Approaches. In INFOCOM.

[19] Pyxida [n. d.]. Pyxida. http://pyxida.sourceforge.net/. ([n. d.]).
[20] RouteViews. [n. d.]. http://www.routeviews.org. ([n. d.]).
[21] Neil Spring, Ratul Mahajan, and Thomas Anderson. 2003. Quantifying the Causes

of Path Inflation. In ACM Sigcomm.
[22] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural Deep Network Em-

bedding. In KDD.
[23] Liwei Wang, Yin Li, Jing Huang, and Svetlana Lazebnik. 2018. Learning two-

branch neural networks for image-text matching tasks. IEEE Transactions on
Pattern Analysis and Machine Intelligence (2018).

[24] Xiaohan Zhao, Alessandra Sala, Haitao Zheng, and Ben Y Zhao. 2011. Efficient
shortest paths on massive social graphs. In CollaborateCom.

ACM SIGCOMM Computer Communication Review Volume 48 Issue 5, October 2018

http://pyxida.sourceforge.net/
http://www.routeviews.org

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Learning Network Representations
	3.1 Data sources
	3.2 IP transformation
	3.3 Network construction

	4 Evaluation
	4.1 Data and methodology
	4.2 Embedding accuracy

	5 Discussion
	6 Conclusions
	References

