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To deal with varying tra�c demands more e↵ectively, a data center network

might include reconfigurable interconnects enabling the network to align its

topology closer with the current demand. This paper by Klaus-Tycho Foer-

ster, Maciej Pacut, and Stefan Schmid studies optimal demand-aware routing

in a static topology augmented with one switch that can set up reconfigurable

links to the other nodes. While the paper extends previous results by the

authors, it presents a number of interesting new results on algorithmic com-

plexity of such optimal demand-aware routing. The two main parameters

in the model are (1) the maximum simultaneous connections a node has to

the reconfigurable switch and (2) the number of alternations, i.e., how many

times a path switches between static and reconfigurable links. The rigorous

analysis demonstrates that optimal demand-aware routing in the considered

hybrid architecture is NP-hard in general. Optimal polynomial-time algo-

rithms exist in the special cases where each path uses at most one recon-

figurable link and fully stays within either static topology or reconfigurable

portion of the network (i.e., there are no alternations). When a path uses

at least two reconfigurable links, optimal polynomial-time solutions without

alternations exist only when a node has at most one connection to the recon-

figurable switch. With alternations, the problem remains NP-hard regardless

of how many connections to the reconfigurable switch are allowed. The ana-

lytical results reveal that while reconfigurable interconnects make data center

networks more flexible, exploitation of this greater flexibility to route tra�c

demands more e↵ectively faces steep computational challenges. The analysis

also suggests a need for a better understanding on algorithmic complexity of

approximate demand-aware routing with provable approximation guarantees.
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ABSTRACT
By enhancing the traditional static network (e.g., based on electric
switches) with a dynamic topology (e.g., based on recon�gurable
optical switches), emerging recon�gurable data centers introduce
unprecedented �exibilities in how networks can be optimized to-
ward the workload they serve. However, such hybrid data centers
are currently limited by a restrictive routing policy enforcing arti�-
cial segregation: each network �ow can only use either the static or
the �exible topology, but not a combination of the two.

This paper explores the algorithmic problem of supporting more
general routing policies, which are not limited by segregation.
While the potential bene�ts of non-segregated routing have been
demonstrated in recent work, the underlying algorithmic complex-
ity is not well-understood. We present a range of novel results on
the algorithmic complexity of non-segregated routing. In particu-
lar, we show that in certain speci�c scenarios, optimal data center
topologies with non-segregated routing policies can be computed
in polynomial-time. In many variants of the problem, however, in-
troducing a more �exible routing comes at a price of complexity:
we prove several important variants to be NP-hard.

CCS CONCEPTS
• Networks → Network architectures; • Theory of computa-
tion → Design and analysis of algorithms;

KEYWORDS
Algorithms, Complexity, Routing, Optical Circuit Switches, Free-
Space Optics, Recon�gurable Topologies

1 INTRODUCTION
With the increasing popularity of data-centric applications, the
design of e�cient and cost-e�ective data center networks has re-
ceived much attention over the last years. While traditionally, data
center topologies are optimized to provide performance guarantees
under arbitrary workloads (e.g., [2, 22, 23, 31, 36, 48]), emerging
recon�gurable topologies (e.g., [10, 12, 17, 20, 25, 27, 34, 47, 54])
allow to dynamically adjust the topology, enabling demand-aware
(“workload-aware”), self-adjusting networks [8]. Demand-aware
networks can achieve a performance similar to demand-oblivious
networks at lower cost [10, 20], depending on the workload.

However, while recon�gurable topologies introduce a new di-
mension of �exibility to the data center design problem, it is typi-
cally impossible to fully exploit these �exibilities due to restrictive
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routing policies. Recon�gurable data center networks are often hy-
brid and combine two types of topologies: a static topology which
consists of e.g., electric switches, and a �exible topology providing
the recon�gurable links, which could be implemented using e.g.,
optical circuit switches, wireless technology, free space optics or
electric solutions as well. But while the topology is hybrid, routing
is often not: routing policies enforce an arti�cial segregation. In
segregated routing, a network �ow can either only use the static
topology (e.g., mice �ows) or only the �exible topology (e.g., ele-
phant �ows), but not a combination of the two; this can lead to a
suboptimal resource allocation [19].

This paper is motivated by the desire to unlock the full �ex-
ibility of recon�gurable networks by supporting non-segregated
routing. In particular, we are interested in the algorithmic complex-
ity of supporting such general routing policies, essentially a joint
optimization problem, involving both topology design and routing.

Contributions. We explore the algorithmic complexity of sup-
porting more general routing policies, which are not limited by
segregation. We classify demand-aware routing in recon�gurable
networks along two dimensions, (1) the number of connections to
the recon�gurable switch per node and (2) if alternations between
the static and recon�gurable network parts are allowed. We also
investigate the e�ect of allowing at most one recon�gurable hop
per route. A tabular overview of our results is presented in Table 1.

• Segregated routing: We �rst show that when each route is
limited to at most one recon�gurable link, an optimal routing
can be found e�ciently (§3). However, if we remove this
restriction, then even allowing b = 2 connections to the
recon�gurable switch turns the problem NP-hard (§4.1), as
well as for every larger b 2 N.

• Non-segregated routing: When one can mix recon�gurable
and static links, routing is more e�cient, but computation-
ally harder to optimize. We show that even allowing k = 1
alternations between network parts is NP-hard (§4.3), even
if the recon�gurable degree is just b = 1. We generalize this
result to every b 2 N in §4.1 and §4.2.

While these results are presented for the popular model of con-
necting one recon�gurable switch to the nodes, as we point out in
§6, many results transfer to multiple switches. Our results further
apply to both uni- and bidirectional recon�gurable links.

2 MODEL
We study the problem of computing a data center topology to opti-
mally serve a given communication pattern, where the topology
combines static (�xed) and recon�gurable links. Our notation fol-
lows the model of [19] for most parts.
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Recon�g. degree �R 2 N h#  1, no alternations No alternations With alternations

�R = 1 P [19] P [19] NPC (k = 1: §4.3, k > 1: [19])

�R = 2 P (§3) NPC (§4.1) NPC (§4.1)

8�R > 2 P (§3) NPC (§4.2) NPC (§4.2)
Table 1: Overview of the complexity of demand-aware routing, depending on the recon�gurable degree b (how many connections to the recon�gurable switch)
and the number of allowed alternations k between the static and the recon�gurable topology. Most problem classes are NP-hard to optimize, except when adding
the restriction that at most h# = 1 recon�gurable linksmay be used on a route—a choice that simpli�es calculating the routing, but at the cost of routing e�ciency.

Network model. Let N = (V , E,w) be a weighted hybrid network
[35, 50] connecting the nodes V = {�1, . . . ,�n } (e.g., top-of-the-
rack switches), using static links E = {e1, . . . , em } and recon�g-
urable links implemented through a recon�gurable (optical circuit)
switch. A recon�gurable switch connects the set of nodes V by
choosing a matchingM on V , where two matched nodes are con-
nected by a bidirectional link. For the sake of generality, we assume
each link, whether static/�xed or dynamic/recon�gurable, comes
with a positive weightw (a cost, e.g., latency).
Tra�c demands. The resulting network should serve a certain
communication pattern, represented as a |V | ⇥ |V | communication
matrix D (the demand matrix). An entry (i, j) in D represents the
communication frequency from the node �i to the node �j .
Optimization objective. We say that the hybrid network N is
con�gured by the recon�gurable switch, where the links contained
in the matching M are referred to as the con�guration of N . For
ease of notation, we will simply write N (M) to denote the concrete
topology resulting from con�guration M and de�ne distN (M)(i, j)
to be the shortest (weighted) distance from node�i to node�j on the
network N (M). Given a hybrid network N and a communication
demand D, our goal is to �nd a con�guration N (M) of the network
N that minimizes the (weighted) average path length for serving D
in N . Succinctly stated:

min
’

(i , j)2D
D[i, j] · distN (M)(i, j) .

That is, we aim to minimize the sum of the weighted (i.e., by �ow
size and link costs) path lengths: for each ordered pair of nodes
�i ,�j 2 V , we multiply the (weighted) length of the shortest path
distN (M)(i, j) from �i to �j on N (M) with their entry (i, j) in D.
We denote this recon�gurable routing problem by RRP.
Problem dimensions. The work in [19] already showed a perfor-
mance gap between networks with segregated and non-segregated
routing, i.e., whether or not the routing may use a combination of
static and recon�gurable links. We analyze this distinction from
a more �ne-grained perspective, namely:

• We introduce a parameter k that de�nes how often a route
may switch between static and recon�gurable links, with k =
0 and k = 1 representing the extremes of (non-)segregation.

• We allow nodes to connect more than once to a recon�g-
urable switch. The number of connections is limited by the
hardware available to the node (e.g., the number of optical
transmitters and receivers). For a node� , by �R (�)we denote
the maximum number of recon�gurable links that � may
utilize, and we set �R (N ) = maxu 2V (N ) �R (u).

• We also study unidirectional recon�gurable links, where
each node � has � inR (�) incoming and �

out
R (�) outgoing re-

con�gurable links, setting � inR (�) + �outR (�) = �R (�).

3 OPTIMALITY FOR SEGREGATED ROUTING
We begin our study with the segregated case (i.e., k = 0) and
study the parameter �R that de�nes the maximum simultaneous
connections a node has to the recon�gurable switch. We show
this variant of RRP to be tractable if we restrict the number of
recon�gurable links that may be be used on a route (denoted by
h#) to just one. In other words, the case where one must choose to
route each demand between either solely along the static network
or along a single recon�gurable link (e.g., for elephant �ows).

Our result will make use of weighted u-capacitated b-matching
algorithms [32], which compute a maximum weight matching for
the case where each node � may match b�  n times, with each
link e being allowed to be used at most ue  u times. b-matching
algorithms were already proposed for recon�gurable networks, e.g.,
in [47]: however, there the b-matching is used to assign elephant
�ows to links, without regards to the static network or provid-
ing optimality proofs. Conceptually, our proof is inspired by [19,
Theorem 1], where the case of �R = b = 1 was considered.

T������ 3.1. Let �R 2 N. The resulting recon�gurable routing
problem RRP with k = 0 alternations and h# = 1 is in P .

P���� �� T������ 3.1. We prove the theorem statement by for-
mulating the routing problem as a matching problem. To this end,
for each pair of demand entries di , j ,dj ,i (possibly of size 0) we
compute the non-negative gain �i , j obtained by connecting the
nodes i, j in the matching, i.e., the potential route improvement
which results from using the recon�gurable link from i to j (re-
call h# = 1, k = 0), multiplied by the combined size of di , j ,dj ,i .
If a recon�gurable link from i to j may not exist, we set �i , j = 0.
Then, we construct the complete graphG 0 with the node set V and
link weights �i , j , and compute a maximum weighted 1-capacitated
(each link may only be used once) �R -matching (with b� = �R (�))
in polynomial time [32], and set the respective matching as the
con�guration M of N , ignoring links with �i , j = 0. ⇤

Remarks on directed routing. We can extend Theorem 3.1 to
apply to unidirectional links as well. To this end, we split each
node � 2 V into two nodes � in,�out, where � in takes care of all
outgoing demands and recon�gurable links of � , analogously for
�
out. Matching links that may not exist are assigned a weight of 0,

i.e., they provide no bene�t.

4 HARDNESS OF NON-SEGREGATION
We continue our study with the non-segregated case. It is known
from previous work [19] that RRP is NP-hard for a recon�gurable
degree of 1 and multiple alternations.1 We will now show that for
1A careful analysis of [19, §3.2] reveals that RRP is NP-hard for k = 2 (or more)
alternations with �R = 1, even though it is only stated for k = 1 in [19].
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any combination of 1) alternations k � 1 and 2) recon�gurable
degree �R � 1, the routing problem RRP remains NP-hard as well.
We start with �R = 2 in Section 4.1 and �R > 2 in Section 4.2,
followed by the more complicated case of �R = 1 in Section 4.3.

4.1 Recon�gurable Degree of Two
We start with the scenario where all nodes have a recon�gurable
degree of 2 and then extend it to higher degree combinations in
Section 4.2.We refer to the recon�gurable routing problem RRPwith
recon�gurable degree of �R (�) = 2 as RRP(2). We show that this
variant is NP-complete by reduction from the NP-hard Circular
Arrangement [33, §2] problem, abbreviated CA, de�ned as follows
in the notation of [33]: given a weighted graph G = (N,A), where
each (demand) arc from A is non-negative, arrange the nodes N in
a graph cycle with unweighted links, s.t. the weighted path length
is minimized. We introduce an auxiliary variant of CA called CA+,
where every arc weight is at least 1. In Theorem 4.1 we show that
this variant is NP-complete, and in Theorem 4.2 we reduce it to
RRP(2). By A �P B we denote the existence of a polynomial-time
reduction from problem A to problem B.

T������ 4.1. CA+ �P CA

P����. For an instance I = (N,A) of CA, we create an instance
I
+ = (N,A+) of CA+ by increasing every arc’s weight by 1, i.e.,
for each pair of nodes (u,�), we set A+(u,�) := A(u,�) + 1. We
construct an instance I 0 of CA+ that simulates I . Formally, for any
integerThr , I has a solution of cost at mostThr i� I

+ has a solution
of cost at most Thr + c(n), where n = |N | and(

c(2k) = k3
c(2k + 1) = k3 + (3/2) · k2 + k/2 .

()) For any solution S for I of cost at most Thr , we produce the
solution S

+ for I+ by replicating the circular arrangement S . For
each pair of nodes (u,�), its (non-weighted) path length `(u ,�) on
a cycle S+ is identical to the path length for (u,�) on a cycle S . Let
S(u,�) and S+(u,�) be the weighted path length of the arc (u,�) in
S and S+, respectively. The weight increase (over S) of each arc in
S
+ is 1, hence S+(u,�) = S(u,�) + 1 · `(u ,�). The total cost of S+ is’

(u ,�)
S
+(u,�) =

’
(u ,�)

(S(u,�) + `(u ,�))  Thr +
’
(u ,�)

`(u ,�) .

It remains to show that
Õ
(u ,�) `(u ,�) = c(n), i.e., the total (non-

weighted) path length between all pairs of nodes on a cycle with n
vertices is c(n). If n is odd, i.e., 2k + 1 = n, then each node u has two
arcs to nodes at distance d for d = {1, 2, . . . ,k}. The sum of path
lengths for arcs that involve u is then 2 · (1 + . . . + k) = k · (k + 1).
To obtain the total path length, we sum over all nodes and divide
by 2 (we counted each arc twice), and hence for odd n’

(u ,�)
`(u ,�) = n · k · (k + 1)/2 = k3 + (3/2) · k2 + k/2 = c(n) .

If n is even, i.e., 2k = n, then each node u has two arcs to nodes
at distance d for d = {1, 2, . . . ,k � 1}, and one arc to the node at
distance k . The sum of path lengths for arcs that involve u is then
2 · (1 + . . . + k � 1) + k = k · (k � 1) + k = k

2. To obtain the total
path length, we sum over all nodes and divide by 2 (we counted
each arc twice), and hence for even n:

’
(u ,�)

`(u ,�) = n · k2/2 = (2 · k) · k2/2 = k3 = c(n) .

(() For any solution S+ for I+ of cost at mostThr+c(n), we produce
the solution S for I by replicating the circular arrangement S . The
proof is equivalent to the ()) case.We use S(u,�) = S

+(u,�) � `(u ,�)
to show that S has the cost at most Thr . ⇤

T������ 4.2. CA+ �P RRP(2)

P����. For an instance I = (N,A) of CA+, we produce an in-
stance I

0 of RRP with an empty static network and demands D
equivalent to weights of arcs A. Then, for any integer Thr , I has
a solution of cost at mostThr i� I

0 has a solution of cost at mostThr .
(() Consider the solution S

0 of cost at most Thr for I 0. The de-
mand between each pair of nodes is positive, hence the optical link
con�guration in S

0 must form a connected graph; otherwise, there
would exist a pair of nodes that cannot be routed and the solution
would be infeasible. Let C be the recon�gurable link con�guration
from S

0. The degree of C is 2 and it is connected, thus C is a cycle.
We construct the solution S for I by setting the arrangement equiv-
alent to the cycle C . The weighted path length of each arc (u,�) is
then no more expensive than the cost of routing the demand (u,�),
and the solution has the cost at most Thr .
()) Consider a solution S for I of cost at most Thr , consisting of
a cycle C . We produce the equivalent circular recon�gurable net-
workN = C for I 0 and route demands by shortest paths. The routing
of every demand (u,�) is no more expensive than the weighted cost
of an arc (u,�) from S , and hence its total cost is at most Thr . ⇤

Conclusions. By combining Lemma 4.1, Lemma 4.2, and the tran-
sitivity of relation �P , we obtain that RRP(2) is NP-complete. As
Directed Circular Arrangement is also NP-hard [33, §3], the
above proof can be directly modi�ed to hold for the unidirectional
case with �

in
R (�) = �

out
R (�) = 1,8� 2 V . Our construction consists

of recon�gurable links only, hence the NP-hardness is independent
of the number of allowed alternations k.

4.2 Beyond a Recon�gurable Degree of Two
We now introduce techniques that allow us to extend the proofs
from Section 4.1 to higher recon�gurable degrees. We believe these
techniques also to be of independent interest for future work.
Link enforcement. If we want to force two nodes �,� 0 to match
with each other, we can create an arbitrarily high demand between
them, s.t. any optimal solution must match � and � 0. With respect
to optimal solutions, the link (�,� 0) must be created, for both the
uni- and bidirectional case.
2-Extension technique. Consider a network where every node
has the identical recon�gurable degree of exactly two, i.e., 8� 2
V : �R (�) = �R = 2. We will now show, �rst for the bidirectional
case, that if RRP is NP-hard in that speci�c setting, then it is also
NP-hard when the recon�gurable degree is increased to some larger
b 2 N. Similarly, we can also use this extension technique to ex-
tend the recon�gurable degree of some subset of nodes from 2 to
b for algorithmic purposes, i.e., that it leaves the matching of an
optimal solution untouched and all newly created nodes will have
a recon�gurable degree of b. To increase the recon�gurable degree
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from 2 to 3, we create a complete binary tree of depth 3 by enforc-
ing links, where we enforce to connect the root to a node � with
a connectivity de�cit of one, and two links between the leaves of
this treeT 1

� s.t. all 7 nodes �11,�
1
2, . . .�

1
7 inT

1
� have a recon�gurable

degree of 3. For the unidirectional case, we orient the link (�,�11)
towards respectively away from � , analogously for the other links,
the recon�gurable degree sum �R remains unchanged.

We now show how to directly jump from 2 to b: we create b � 2
trees T3, . . . ,Tb , where we enforce 7 cliques, one for each of the
seven node groups �i1, . . . ,�

i
7—each of them thus having a recon-

�gurable degree of 3 + b � 3 = b, except for the �i1s, which have
2 + b � 3 = b � 1. We then enforce to connect those b � 2 �i1s to � .
Again, for the unidirectional case, we orient those links arbitrarily.

By applying the 2-extension technique, the earlier theorem can
be extended to any �xed recon�gurable degree in N.

C�������� 4.3. For every number of allowed alternations k 2 N
and for every recon�gurable degree �R (�) = b,b 2 N,b � 2,8� 2 V

holds: the recon�gurable routing problem RRP is NP-complete.
Furthermore, as the 2-extension technique only increased the

number of nodes by a factor of O(b), the recon�gurable degree b
can be raised even higher as a function of n, i.e., b = df (n)e � 2. As
long as this function f remains polynomial, NP-hardness holds.

4.3 Recon�gurable Degree of One
In this section, we show that RRP is NP-complete even in the re-
stricted variant, where all nodes have the recon�gurable degree of 1,
and with at most 1 alternation for the routing of any demand. Our
construction unfolds in two stages. First, we introduce an auxiliary
variant of RRP problem: for any integer `, by `-RRP we denote the
variant of RRP, where the recon�gurable network M consists of at
most ` links. In Lemma 4.4, we present a polynomial time reduction
from RRP to `-RRP. Then, in Lemma 4.5, we reduce the classic Vertex
Cover problem to `-RRP.

L���� 4.4. For any positive integer `, we have `-RRP �P RRP.
P����. Consider any `-RRP instance I with the static networkG .

We assume thatG is normalized, i.e., the minimum weight of a link
is 1. We construct an instance I 0 of RRP that simulates I . Precisely,
we prove that for any integer Thr , I has a solution of cost at most
Thr i� I

0 has a solution of cost at most
Thr

0 := Thr + (2 · (bn/2c � `)) · ((n � 1) · (D + 1)+D) · (Thr + 1) ,
where D is the maximum weight of the shortest weighted path
between any two nodes inG . We preserve the weight of static links,
the weights of recon�gurable links, and the demands between every
pair of nodes from G . We introduce an additional set of nodes A of
size 2 · (bn/2c � `). We connect every node from A with every node
fromG by a static link with weightD+1. Every recon�gurable link
between A andG has weight D. We produce additional demands
of volume Thr + 1 from every node from A to every node from G.

Consider a demand between a pair of nodesa 2 A, b 2 V (G). The
optimal routing of a demand from a to b costsD if a recon�gurable
link (a,b) is present, and costsD+1 otherwise. If the recon�gurable
link is not present, every non-direct route costs at least D + 1: the
cost at least D is incurred between a and any node c 2 V (G), and
the cost at least 1 is incurred between b and c (the static network is
normalized). Complementary, the optimal route between a and b
costs at most D + 1, as a direct static link of such weight exists.

Note that providing A with less than |A| recon�gurable links
results in surpassing the threshold Thr 0. As at most one recon�g-
urable link can be adjacent to any node, each node from A incurs
the cost of at least ((n� 1) · (D + 1)+D) · (Thr + 1) for its demands.
Every node from A with no adjacent recon�gurable link incurs the
cost at least (n · (D + 1)) · (Thr + 1), which incurs additional cost
at least Thr + 1 that cannot be compensated by savings in routing
demands among nodes in G. As the maximum recon�gurable de-
gree (�R ) is 1, in every solution to I 0 with cost at most Thr 0, every
node from A has a recon�gurable link to some node in G.

To reconstruct the solution to I , we take the recon�gurable links
among nodes from G from the solution to I

0. Now, we claim that
the reconstructed solution has exactly ` recon�gurable links. In any
graph with n vertices, the maximum size of any matching is bn/2c.
To restrict it to ` links, we need to remove bn/2c � ` matching links.
To prevent one link from appearing, we need to reduce the number
of matchable nodes by 2. Each node from A matches to one node
from G, and |A| = 2 · (bn/2c � `).

As every node of A has exactly one recon�gurable link to a node
from G, the cost of routing demands between A and G is exactly
|A| · ((n � 1) · (D + 1) + D) · (Thr + 1). By the de�nition of the
threshold Thr 0, the remaining budget for routing demands inside
G is Thr . Note that we preserve the shortest paths among nodes
from G: by the weight of static and recon�gurable links between
A and G, the routes through A weigh more than any path in the
original network. Hence, the cost of the reconstructed solution to I
is at most Thr . ⇤

L���� 4.5. It holds that Vertex Cover �P
–

` `-RRP.
P����. For an integer t , the decision version of the Vertex

Cover is the problem of determining the existence of a vertex cover
of size at most t . Consider any decision Vertex Cover instance
hG, ti, where G = hV , Ei. We produce a `-RRP instance (where
` = |E | + t ) that has a feasible solution that satis�es a threshold
Thr := 5 · |E | i� a vertex cover of G of size at most t exists.

The construction unfolds as follows. For each vertex � 2 V we
produce a Vertex Gadget that consists of two nodes: a� and b� . For
each link e 2 E we produce a Link Gadget that consists of three
nodes: le ,me and re , and two links of weight 3: (le ,me ) and (re ,me ).
For each link e = (u,�) 2 E we produce two links of weight 2:
(me ,bu ) and (me ,b� ) and two links of weight 1: (au , le ) and (a� , re ).
For each link e 2 E, recon�gurable links (le ,me ) and (re ,me ) have
weight 1 and for each vertex � 2 V , a recon�gurable link (a� ,b� )
has weight 1. Remaining recon�gurable links (x,�) 2 V ⇥V have
weight equal to the shortest path (via static links only) between x

and � in graph G, and an appearance of such a recon�gurable link
does not improve routing of any demand. For each link e = (u,�) 2
E we produce two unitary demands: (me ,au ) and (me ,a� ), and we
call those the cover demands of e . The construction is depicted in
Figure 1.

Consider a demand (me ,au ). We distinguish among three ways
of routing it: In presence of the recon�gurable link (me , le ), the short
route of weight 2 consists of nodesme ! le ! au . In presence
of the recon�gurable link (a� ,b� ), the medium route of weight 3
consists of nodesme ! bu ! au . We classify every other route (of
weight � 4) as a long route. Symmetrically, for a demand (me ,a� ),
analogous short routes through vertex re (instead of le ) exist.
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Figure 1: Construction for a link e adjacent to verticesu and� . Static links are
drawn solid, and have their weight denoted next to them. Only recon�gurable
links that can possibly improve the routing are shown (dashed). We omit the
other links and the recon�gurable switch in this �gure for clarity.

We say that a vertex � 2 V is active if the recon�gurable link
(a� ,b� ) appears. Now, we argue that at most t vertices are active.
Assume that more than t vertices are active. As we have at most
t + |E | recon�gurable links, there exists a link f 2 E such that
none of recon�gurable links {(mf , lf ), (mf , rf )} exists. In this case,
no short route for the cover demands of f exists, and the cost
incurred for them is at least 6. For the remaining cover demands
e 2 E \ { f }: as �R = 1, at most one recon�gurable link from
{(me , le ), (me , re )} exists. Hence, at most one of the cover demands
of e can be routed by the short route of cost 2, and the minimum
cost of routing of both cover demands of e is 5. Summing up, the
total cost is 6 + 5 · (|E | � 1) > Thr , a contradiction.

To reconstruct the solution to the Vertex Cover, we take active
vertices. Now, we argue that such a solution covers all links. Note
that any solution that routes any demand by a long route exceeds
the threshold. We stated previously that for each e = (u,�) 2 E, at
most one of the cover demands of e is routed by the short route.
Hence, exactly one of the cover demands of e is routed by a path
of cost 3, and the only path of such weight is the medium route to
either u or � . The existence of a medium path implies that either u
or � is active, and hence e is covered.

Finally, we show how to reconstruct the `-RRP solution given
a vertex cover. Consider a link e = (u,�) 2 E, and assume that
it is covered by u. We route the demand (me ,au ) by the medium
route, and we route the demand (me ,a� ) by the short route, placing
recon�gurable links to allow the existence of such routes. ⇤

Remarks on directed routing. We can modify Lemmas 4.4 and
4.5 to show hardness in the directed routing model. Instead of
setting �R = 1, we set � inR = 1 and �outR = 1 (note that those values
are minimal for any recon�gurable links to appear). To show that
we can reduce the number of recon�gurable links to `, we modify
Lemma 4.4 in the following way: we direct the recon�gurable and
static links, and demands between A and G towards nodes of A.
As the maximum number of recon�gurable links in the directed
routing problem is n (rather than bn/2c), we adjust the size of set
A to n � `, and we adjust the threshold value accordingly: Thr 0 :=
Thr + (n � `)) · ((n � 1) · (D + 1) +D) · (Thr + 1). In any solution
of the cost at most Thr , each node from A has an incoming link,
and the number of links inside G is n � (n � `) = `. Finally, we
modify Lemma 4.5 by directing every recon�gurable and static link,
and every demand from me towards a� . Note that although the
model allows for multiple hops through recon�gurable links, in our
construction we used paths with at most one recon�gurable link.
Conclusions. By combining Lemma 4.4, Lemma 4.5, and the tran-
sitivity of relation �P , we obtain that RRP is NP-complete. The
problem remains NP-complete even if we allow at most one alter-
nation, and at most one hop through the recon�gurable network
in the routing of any demand.

5 RELATEDWORK
Most existing literature on data center network design deals with
demand-oblivious topologies, see [41] for a recent survey. In con-
trast, we in this paper are interested in demand-aware network
designs, which not only arise in data centers but also in wide area
networks, e.g., [16, 24, 27, 28, 37, 46].

We are not the �rst to explore non-segregated routing in hybrid
networks. In particular, Xia et al. [53] leverage converter switches
to dynamically convert between a Clos network and approximate
random graphs of di�erent sizes. Venkatakrishnan et al. [50] show
that routing policies restricted to direct or single-hop routing are in-
e�cient and present near-optimal scheduling algorithms, however,
only for the segregated case; the general case is stated as an open
problem. An orthogonal approach is taken by Mellette et al. [38, 39]
who consider switches which rotate through a set of pre-de�ned
matchings (building expander-like graphs in [39]), also leveraging
Valiant-style [49] multi-hop optical connections.

In this paper, we are particularly interested in network design
and routing algorithms which come with formal (approximation
or optimality) guarantees. Most prior algorithmic works usually
assume segregated routing models and rely on heuristics based on
matchings [10, 17, 34, 35, 51], edge-coloring [13], or stable-matching
algorithms [15, 20], see [29, 52]. Avin et al. [5] presented a constant-
degree network design algorithmwhich achieves a constant approx-
imation of the optimal expected route length, which is shown to be
proportional to the conditional entropy of the workload. Their ap-
proach of combining per-source optimal tree networks, has recently
been extended to account also for congestion [7]. Furthermore, the
authors showed that a connection to coding theory can be leveraged
to design resilient demand-aware networks. However, the above re-
sults (and others [4, 44, 45]) concern fully recon�gurable networks,
where all links are recon�gurable.

Closer to our work (and reality) are the results by Foerster et al.
[19] who provide polynomial-time exact (i.e., optimal) algorithms,
for speci�c demands and models, and also derive �rst hardness
results. The performance of various heuristics in this setting is
evaluated in [18]. We in this paper extend [19] by investigating the
complexity of more general non-segregated routing.

The problem of enhancing a given static network with a recon�g-
urable topology is related to classic combinatorial problems arising
in graph theory. For example, Manos et al. [42] presented algorithms
to augment a given graph with ghost edges to provide small world
properties and short path lengths, see also the recent paper by Goz-
zard for a good overview of the state-of-the-art [21]. The underlying
problems are also related to the k-median problem [40] and known
to be hard, even to approximate, in general [43]. Besides consider-
ing shortest paths, researchers have also investigated algorithms to
reduce the network diameter [11, 14]. In contrast to these works,
motivated by emerging optical switches, we consider the problem
of adding links via matchings, hence introducing a new perspective
on the b-matching literature [1, 30], typically arising in market
situations where, e.g., users need to be matched to a cardinality-
constrained set of items, e.g., matching children to schools. In this
paper, we are only interested in the route length between nodes
which actually communicate (demand-aware routing).
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Finally, we note that there also exist results on dynamic network
design algorithms which aim to strike a balance between recon�gu-
ration costs and providing shorter routes [3, 6, 9, 26, 44, 45], as well
as for the case where links need to be removed for maintenance [55].

6 CONCLUSION
This paper showed that more �exible, non-segregated routing poli-
cies can introduce additional algorithmic complexities. In particular,
we presented algorithms and charted a detailed complexity land-
scape of non-segregated routing. We hence hope that our results
can be useful and provide a more complete picture of the bene�ts
and costs when moving beyond segregated routing.

Even though we focused on the popular model of one recon-
�gurable switch in this paper [29, 52], the case of multiple such
switches is also of importance [38, 53]. Our hardness results nat-
urally transfer to this extension, and in most non-segregated sce-
narios, there is not much di�erence between algorithms for one
or multiple switches, as multiple recon�gurable switches can be
emulated by one switch, combining 1) large weights for not per-
mitted recon�gurable links and 2) fake child nodes for each node
to enforce the inter-switch connectivity constraints.

There still remain several interesting open problems for future
research. In particular, it will be interesting to shed light on the com-
plexity of speci�c network topologies. Furthermore, while we have
focused on exact algorithms, it remains to explore the complexity
of (provably) approximate algorithms in more depth.
Acknowledgements. We would like to thank the anonymous re-
viewers of this article for their helpful comments.
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