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ABSTRACT
This note is about the interplay between a data structure, the
append-only log, and a broadcasting communication abstraction
that seems to induce it. We identified real-world systems which
have started to exploit this configuration and highlight its desirable
properties. Networking research should take note of this develop-
ment and adjust its research agenda accordingly.

CCS CONCEPTS
• Networks → Network design principles; • Software and
its engineering → Publish-subscribe / event-based architec-
tures; • Information systems → Linked lists; • Computer sys-
tems organization→ Peer-to-peer architectures; Fault-tolerant net-
work topologies; • Theory of computation→ Data structures and
algorithms for data management;
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1 INTRODUCTION
In August 2018 I learned about a project called Secure Scuttlebutt
(SSB) – an overlay network created by D. Tarr in 2014 that is tailored
for decentralized social applications. This note aims at extracting
the gist of SSB, which is that networking with arbitrary data packets
could be replaced by networking with coherent data structures.
The question is “what are suitable data structures” and what would
corresponding networking primitives look like. SSB gives a very
radical answer to this, although in retrospect SSB’s choice seems
natural if one starts from first principles.

In the analog world, propagation of perturbations is the basis of
information dissemination: Depending on the physical constraints,
a wavefront is carrying information omnidirectionally (wireless,
water surface) or directionally (in a wire or fiber). However, in
computer networks, the unidirectional style has become the domi-
nant and default communication model on which today’s network
architectures are based, starting from the fact that data packets typ-
ically have a source and a destination, so do circuits, or we observe
wordings like “wireless link” and note that routing algorithms are
graph-based, hence link-oriented, without exception.

In a broadcast-centric world, there is no destination, just a
source; wireless transmission is not a link but naturally implements
broadcast; routing is not required because perturbations just propa-
gate infinitely far if not blocked. We should ask ourselves whether

broadcast wouldn’t be the better base level abstraction on which to
build other communication services, turning point-to-point com-
munication into a minor (and often inferior) corner case.

Surprisingly, we find a tight relationship between the broadcast
model and a data structure, namely append-only logs, that this
note wants to highlight. We believe that looking at communication
problems from a data structure point of view is an important step
towards a better understanding of reliable, synchronized, secure
and privacy-preserving operations of distributed applications.

We start by describing the properties of a particular broadcast
abstraction which still is somehow close to physical phenomena
(potentially making the mapping to the analog realm easier), but is
abstract enough such that one can recursively refine and implement
this abstraction. A suitable candidate for this abstraction are solitons
i.e., information packets that propagate as a solitary wave.

2 LOCAL AND GLOBAL SOLITARYWAVES
Solitons[6] are particle waves or wave packets which travel through
space without leaving any disturbance behind them. Such solitary
waves have been observed from biology to cosmology and have
important applications in communications, for example fiber optics.
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Figure 1: A perturbation triggered by a station P propagates
as a solitary wave to all observers O .

The purpose of this note is to take solitons as the inspiration for a
communication model whose operation is best described in terms
of an initial perturbation that propagates in a wave-like form, in all
directions. Such a broadcast model shall obey the following three
properties:

(1) Each perturbation source has a globally unique identifier
that is carried with each perturbation it triggers.

(2) A perturbation and its value eventually reaches all anony-
mous observers.

(3) All observers sense subsequent perturbations coming from
a specific source in the same order.

Using middleware language, the communication primitive having
above properties can also be described as reliable, ordered broadcast
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under an asynchronous communication model. Figure 1 depicts the
broadcast-only communication model where one source labeled P
triggers a solitary wave that some observersO already have sensed
while others still wait for its arrival.

Property (1) can be implemented in the wireless domain by as-
signing a unique frequency to each station (no need to encode the
ID in symbolic form). Similarly, property (3) does not need spe-
cial implementation effort if all perturbations travel with the same
speed and in isolated paths. Fading in wireless systems due to multi-
path forwarding can be addressed with rake receivers, restoring the
soliton-like behavior. How the three properties are implemented is
not essential for the model as long as the properties hold.

2.1 Implementing Global Solitary Waves
Leaving temporarily the problem of intermittent connectivity and
information loss (due to media interference or node crashes) aside,
we look at the state and logic needed for implementing a global soli-
tary wave system based on the forwarding of local solitary waves,
first assuming a static network topology and fixed transmission
delays.

True to our broadcast-only viewpoint we assume that space is
covered with observers called relays, capable of picking up solitary
waves in one media and propagating them to another media. In
a physical implementation these media could be the same where
the relay just re-broadcasts an amplified version of the sensed
wave. Our goal is to build a global broadcast system relying on
the concatenation of many local broadcast domains. The global
system should have the same properties that we have defined above
and that we have at the local level (see Figure 2). The problem we
have to solve is the enforcement of a single “frontier” although
a perturbation can reach an observer via different paths or from
multiple relays, hence at different points in time.
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Figure 2: Global solitary waves can be built from local soli-
tary waves forwarded across multiple media, if the solitons
carry a suitable reference, permitting to sync on the pertur-
bation front.

We consider a global solitary wave system using flooding: A lo-
cally sensed perturbation is (immediately or with some delay) for-
warded by every neighbor relay. The common case will be that
a relay senses a perturbation several times, but the perturbation
should only be processed once for each observer, hence the need
for a duplicate suppression mechanism. Such a mechanism is also
required for terminating the global wave instead of having it run
in circles. Instead of just assuming the total order property (3), we
add to each perturbation a reference re f that permits to compute

the order of two perturbations. In a computer system, such refer-
ences can simply be a per-source logical clock that advances for
each triggered perturbation. Alternatively, one can include in a
perturbation the hash value computed over the representation of
the previous perturbation, thus forming a hash chain. What matters
for our purpose is that we can enforce property (3) i.e., total or-
der of perturbations for each source. Having such a reference, and
combining it with the perturbation’s source ID, we will represent a
perturbation as a tuple ⟨src, re f ,val⟩.

We now sketch the program logic of a relay that bridges two
media, assuming a static network and constant propagation times.
The relaywill keep a frontier array of references per source. These
frontier variables keep track of the next expected valid perturbation
references, as is shown in the following program:

1 Relay_I: // static network and zero jitter case
2 frontier [] // per source expected next reference
3
4 on_sense(P=<src ,ref ,val >):
5 if frontier[P.src] == P.ref: // filter out duplicates
6 forward(P)
7 frontier[P.src] = next_ref(P)
8 // observer notification of P.val goes here
9
10 next_ref(P):
11 return P.ref + 1 // for sequence numbers
12 return hash(P) // for hash chaining

With this “filtered forwarding” algorithm (I), a perturbation will
be propagated globally and is processed only once and in order for
each observer. Note that property (1) enables a flat implementation
i.e., we can reuse the local source identifiers at the global level. Each
local observer is at the same time an observer at the global level
(compare with Figure 2).

Dynamic Network Case
In the relay implementation (I), keeping a per-source reference of
the next expected perturbation is sufficient state for building the
global broadcast domain on top of local relays, under the assumption
that there is no mobility or change in topology. Adding a new relay,
for example, can instantly lead to a shorter forwarding path such
that a perturbation ⟨src,N + 2,x⟩ is potentially sensed earlier than
perturbation ⟨src,N + 1,y⟩ (e.g., carried over a longer forwarding
chain). Also, data mules in settings with intermittent connectivity
can lead to old perturbations being delivered after newer pertur-
bations. In these cases, a simple counter or hash reference is not
sufficient anymore and relaysmust pay the “price of asynchronicity”
in form of memory, typically bound by the maximum jitter1. Our
relay algorithm (II) addresses this problem:

1 Relay_II: // dynamic network and variable delays
2 frontier [] // per source references
3 bag // temporary store for perturbations
4
5 on_sense(P=<src ,ref ,val >):
6 if P.ref >= frontier[P.src] and not P in bag:
7 bag.add(P) // only add new stuff
8 while exists Q in bag with frontier[Q.src] == Q.ref:
9 forward(Q)
10 frontier[Q.src] = next_ref(Q)
11 bag.remove(Q)
12 // observer notification of Q.val goes here

1If we knew the maximum delay that a perturbation can obtain, we could limit the
size of the bag needed.
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The role of the bag is to temporarily store out-of-order pertur-
bations. The while loop will drain the bag for the longest possible
“perturbation train” as soon as a valid extension has been sensed for
that source’s frontier. Note that this algorithm reestablishes order
at every relay, forwarding perturbations in strict source order.

Recovering from Loss
Coming back to the problem of lost information, relays must dis-
cover that a perturbation was lost and must implement some au-
tomatic retransmission mechanism (ARQ), or use forward error
correction and rateless coding which we don’t consider in this note.
If relays do that, we can offer global perturbation propagation also
for this general case by arbitrarily stitching together local broadcast
domains that conform to the three system properties.

We consider the loss case although one could argue that if the
local broadcast media fulfill the three properties, loss should not
happen. However, the loss of a perturbation in a media is not the
primary concern but the possible crash of a relay which would sink
with the stored signal before it could be forwarded.

The following relay algorithm (III) implements a pull mechanism
for missed perturbations that complements the (push) broadcast
of regular perturbations: relays periodically announce their next
expected reference, asking all neighbor to (re-) send them any fron-
tier extension ASAP. This is done through broadcasting (this is the
only way to communicate in our model) a local AQR perturbation
which is then sensed by the relays in vicinity. This request is not
propagated: instead, either a neighbor has the requested content
(in which case it is returned) or the neighbor waits itself for it and
once it receives it, will relay it automatically.

1 Relay_III: // arbitrary network dynamics , delay , losses
2 log[] // complete perturbation history , per source
3
4 on_sense(P=<src ,ref ,val >):
5 if next_ref(log[P.src]. newest) == P.ref:
6 forward(P)
7 log[P.src]. append(P)
8 // observer notification of P.val goes here
9
10 on_sense(P=<src ,ARQ ,ref >):
11 // ARQ is a fixed non -reference value
12 if exists Q in log[P.src] with Q.ref == P.ref:
13 forward(Q)
14
15 on_regular_intervals:
16 for all src:
17 forward(<src ,ARQ ,next_ref(log[src]. newest)>)

There are a few interesting observations for this algorithm (III).
Firstly, unlike algorithm (II) where we used a bag to store perturba-
tion that potentially have to be re-broadcast, we use a log to keep
track of all perturbations sensed so far, for every source. This ever-
growing data structure is mandated by loss and asynchronicity, i.e.
the possibility that some relay can show up which had been cut
off for arbitrarily long times. This can also be interpreted with a
positive twist by observing that freshly joining relays can “boot”
into a running system and catch up by requesting all perturbations
that have ever been recorded. Secondly, algorithm (III) is a variation
of algorithm (I) where the references kept in frontier are now
fetched from the logs’ newest elements: a perturbation is forwarded
only if it extends the frontier for the given src (or as a reaction to a
ARQ request).

So far we have shown how the three desired properties can
be maintained for a global broadcast-only system built from an
arbitrary mesh of local broadcast systems with the same properties.
At the end we are left with relays and observers keeping the full
log of perturbations ever emitted by a source. In the next section
we show how to use this data structure to implement arbitrary
communication patterns at the observer level.

3 INTERACTIVE PROTOCOLS OVER
REPLICATED APPEND-ONLY LOGS

Letting two UNIX processes communicate over a pipe can be inter-
preted as appending to a buffer (file) and reading from the oldest
additions. In analogy, interactive protocols can easily be imple-
mented over the replicated append-only logs that are at the core
of the relay implementation (III). In this section we first look at
the classic send/recv primitives but also consider synchronization
tasks as well as scalable distributed data types.

Point-to-point Communication
Using the implementation (III) of the previous section, we assign
to each communicating party a unique source identifier that is also
used as a destination ID. Senders can target specific destinations by
generating, for a send(dest,msg) call, a val = ⟨dest ,msд⟩ pertur-
bation which will eventually end up in all observers’ log replicas
as ⟨src, re f , ⟨dest ,msд⟩⟩. The observers then watch for new log
extensions and filter out the relevant ones (line 9):

1 send(src ,dest ,msg) -> forward( <src ,ref ,<dest ,msg >> )
2
3 ...
4 on_sense(P=<src ,ref ,val >):
5 if next_ref(log[P.src]. newest) == P.ref:
6 forward(P)
7 log[P.src]. append(P)
8 if P.val == <dest ,msg > and dest == my_ID:
9 recv_upcall(P.src , P.val.dest , P.val.msg)

Note that this implementation of send() and recv() does not
suffer from out-of-order messages because of the append-only na-
ture of the (sender’s) log.

Multicast, Group Communication and Pub/Sub
The destination selection that is carried out in the point-to-point
example above can be used to implement a variety of different
communication styles by letting potential destinations filter on
other identifiers than their own ID. One can assign unique IDs to
different (multi-cast) groups, or different topics of a pub/sub system,
and use them as quasi destination. Observers then compare these
destination values with their internal set of quasi destinations that
encode whether they are a member of a specific group, or have
subscribed to some pub/sub channel.

1 pub(topic_id , msg) -> forward( <src ,ref ,<topic_id ,msg >> )
2
3 ...
4 on_sense(P=<src ,ref ,val >):
5 if next_ref(log[P.src]. newest) == P.ref:
6 forward(P)
7 log[P.src]. append(P)
8 if P.val == <topic ,msg > and topic in my_subscriptions:
9 consume_upcall(P.src , P.val.topic , P.val.msg)
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This implementation strategy covers classical social apps like
chat rooms in a fully decentralized way: writers publish new chat
messages to their own log, tagged with the chat room’s ID, and
readers watch for such messages in their local log replicas.

Privacy-Preserving Communication
The point-to-point example from above reveals the message to
everybody, including sender and receiver ID, but it can be modified
to cover fully privacy-preserving communication by encrypting
the message such that only the intended receiver(s) can decrypt it
(using either a shared secret or asymmetric crypto):

1 private_send(src ,dest ,msg) ->
2 forward( <src ,ref ,encr(dest_secret ,msg)> )
3 ...
4 on_sense(P=<src ,ref ,val >):
5 if next_ref(log[P.src]. newest) == P.ref:
6 forward(P)
7 log[P.src]. append(P)
8 try:
9 msg = decrypt(my_credentials , val)
10 if success:
11 recv_upcall(P.src , my_id , msg)

Confidentiality and privacy (for meta-data) is achieved by the
replication of the sender’s log to all observers, leaving an attacker
clueless for whom such a message was sent. Real-world imple-
mentations may attempt to take shortcuts, as we will discuss in
Section 6, hence limit that privacy property. Another limitation
is that high-level observations remain possible: e.g. an immediate
perturbation event after having received a log extension, although
encrypted, has a high chance of being a reply.

Synchronization
The total order of the perturbation logs makes it easy to imple-
ment synchronization protocols. A semaphore or lock would be
implemented by a process having a source ID to which request
messages must be sent. The access token to a specific requester
ID is then posted in the semaphore process’ log and picked up by
the requester after replication. After having worked through the
critical section, a release token is put on the requester’s log that is
then picked up by the semaphore’s process.

Letting processes synchronize on an ensemble of data elements
(e.g., a snapshot whose elements are produced by multiple parties)
can be achieved by putting the data elements in each producer’s
log and collect the references of these items in a manifest (list of
references), that is also put in a log. Mutually agreeing on that
list (instead of having one peer decide on the snapshot) is more
complex, although it is possible (see the next section) if eventual
consistency is good enough.

Distributed Data Structures: Conflict-free Repli-
cated Data Types (CRDT) and Trace Algebras
The semaphore or snapshot implementations above have the draw-
back of introducing single management processes that become a
scaling bottleneck if many semaphore or snapshot actions have to
be performed in time, as well as being an availability risk and trust
hazard. For shared data structures there exists fully decentralized
protocols which do not require any central components, hence will
scale infinitely, as research in CRDT [12] has shown. This comes

with the flavor of (strong) eventual consistency, thus works only
with applications that can handle temporary inconsistency.

Append-only logs lend themselves very well for transporting
CRDT protocols because the total order of a peer’s operations is
a direct enabler of so-called commutative replicated data types. A
simple example is the chat room application that was already men-
tioned above where posting a message comes with referencing the
most recent posts seen. The posted messages, sitting in different
logs but referencing each other (and creating global partial order),
form a specific directed acyclic graph having only one root node
(this data structure is sometimes called a “tangle”): Topological sort-
ing permits to derive a linearized version of the posting sequence
from the root to the latest postings that is identical for all partic-
ipants if the same tie breaking strategy is used and once all log
content was eventually delivered to the interested parties – yet no
coordination protocol or server was needed.

CRDTs have been adopted in highly-scalable database systems
since many years now (e.g. RIAK in 2013, see [14] for a recent
historic account). The logs are traces from which application-level
data structures are derived: Trace algebras [4] provide the tools to
reason about concurrency and event ordering.

Offline and Trustless Communications
Having all logs replicated at every observer permits fully offline and
delay-tolerant operations. Application code can tap into the com-
plete set of messages exchanged so far, present derived results to the
user and produce followup messages if necessary. New messages
are simply appended to that source’s log and the log will be repli-
cated, through the global broadcast model, as soon as an observer is
online (again). Unlike Delay Tolerant Networking protocols (DTN)
that require logic to form special data bundles for requests and
replies, what matters in the broadcast-only communication model
is that every log extension turns into a perturbation that propagates
through the whole network, in an application-agnostic way.

The goal of “decent(tralized)” applications is to eliminate the
dependency on central infrastructures and external trust, which
can be best characterized by the complete absence of “server not
reachable” errors or incidents like “security breach because a hard-
wired trust assumption was broken” (e.g. root key of DNSSEC was
compromised). It suffices that logs are immutable and all entries
are signed: from this, applications must compute their own trust,
based on what (portion of) logs the end user deems trustworthy.
The replicating broadcast network itself could be malicious, e.g.
censoring certain perturbation sources in parts of the network.
However, because log entries do not care about the way they are
transferred (online or sneakernet), it is always possible to ship log
entries in the logs of non-blocked sources, in encrypted form. As
long as the blocked source’s log reaches at least one non-blocked
observer, such tunnels can be used to create an “in-lay” network
that is not censurable.

4 BROADCAST-ONLY COMMUNICATION IN
THEWILD

In this section we briefly review three existing systems that either
are implementing the broadcast-only communicationmodel (Secure
Scuttlebutt), are structurally equivalent (X.509 PKI), or provide
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similar services with other techniques (Google’s Cloud Pub/Sub
service).

4.1 Secure Scuttlebutt (SSB)
Secure Scuttlebutt [16, 18], initiated 4 years ago, is an operational IP
overlay peer-to-peer network that implements the relay algorithm
(III) of Section 2. In SSB, each source is identified with an ED25519
key pair; Sources manage their append-only log that is cryptograph-
ically secured through signed and hash-chained entries; Sources
peer with other nodes to replicate the logs of other sources and use
sequence numbers to ask for content beyond the local log’s height;
Applications only consult the locally available log replicas. A dozen
such applications, mostly of social networking type, are in use by a
growing community of about 10’000 persons at the time of writing.

Because SSB is a running system, some interesting questions
have become evident from its operations, which we quickly point
out as they also apply to the broadcast-only approach in general.
(i) There is no clear understanding how a Identity Life Cycle should
be organized. One problem is that relays have to learn about new
identities and new identities have to learn about relays, both having
to also decide whether they should trust each other. In SSB, a social
on-boarding mechanism is used to overcome this chicken-and-egg
problem. Related to this is the question of garbage collecting inac-
tive IDs and their logs. (ii) SSB has a “social” approach to Replication
Control and Trust. By following an ID, its log becomes replicated,
as well as the logs of that friend’s friends. Additional means will be
needed to let nodes replicate only portions of the full content which
is a tradeoff with privacy. (iii) Forking a log, created by accident
or maliciously, leads to network partitioning where only one of
the two forks will be visible, per network part. Either the ensem-
ble of peers define a policy to shut out forked logs, or there are
mechanisms to let the log owner remediate a fork. (iv) Extracting
from (potentially) all local logs the entries that are relevant to some
application or data structure is involved and requires considerable
indexing effort. Currently, the incremental tracking is part of a
monolithic program and internal application-agnostic interfaces
still have to emerge.

Despite these open points and shortcomings we consider SSB to
be a milestone in communications and distributed system: It has
identified a high-level unifying abstraction where networking and
distributed applications can meet, with central communications
problems already factored out (trust, reliability, synchronization).
We resume assessment of SSB in Section 6.

4.2 Public Key Infrastructure (PKI)
The Public Key Infrastructure [3] has become an indispensable pillar
of today’s Internet. It’s main role is trust management through
certificates which map real-world entities (some person or other
legal entity) to a public key in a way that its correctness can be
mechanically traced back to a so-called “Certificate Authority” (CA).

We assert that the PKI has the same logical structure as the
Secure Scuttlebutt system. A CA’s root key plays the role of a unique
source ID in the broadcast-only communication model. Certificates
typically carry a serial number: assuming the CAs hand out serial
numbers correctly, all certificates signed by a CA form a set of logs
(because a CA usually manages multiple root keys).

The PKI does not mandate the replication of all certificates is-
sued by a CA: certificate distribution is linked to the context where
they are needed e.g., they are fetched at https connect time. How-
ever, root certificates MUST and are replicated in advance, either in
web browsers, Java keystores or through operating system distros
(CA bundles). While this may lead to a partial replication of all
certificate (logs), it was recognized that certain flaws in the PKI sys-
tem can only be addressed by full replication. Google’s “Certificate
Transparency” (CT) [11] initiative addresses this problem, namely
collecting all certificates in separate logs that can, incidentally like
SSB, be replicated through a gossip protocol. Based on these repli-
cated append-only logs, independent third parties (which we call
observers in our model) can compute trust properties, i.e. violations
of certificate issuing policies [13].

Although not envisaged as an infrastructure to run interactive
protocols over it, PKI and CT follow the log replication model in
a literal way. In the case of certificates, the total amount of data
is small enough to permit worldwide and full replication, at least
for some organizations. From a privacy point of view it would be
advantageous to replicate the whole data set to every end device
(because fetching certificates reveals communication intents), as
was pointed out in [13].

4.3 Google Cloud Pub/Sub
The pub/sub concept [5] addresses the need for a wide-area, or
even global, event notification system through which distributed
applications can coordinate their activities. While it is still a debate
(in the Information Centric Networking community) how this could
be implemented as a real (low-level) network, pub/sub definitely
has been recognized as an essential service at the middleware level.
Google implements its Cloud Pub/Sub product [8] with very strong
guarantees and calls it a secure, durable, highly available and scal-
able many-to-many messaging system. Cloud Pub/Sub messages
are published to “topics” and kept in a persistent message store
until they could be delivered to all subscribers to that topic (up to a
limit of several days). The contract is that once an item has been
handed over to Cloud Pub/Sub, nothing can fail.

“Topics” in pub/sub can be seen as “source IDs” of an append-
only log, with reliable in-order delivery, plus “log compaction” as
an optimization in order to trim the ever-growing logs (as soon as
a published item has been delivered to all subscribers). Google’s
effort to implement this service is considerable, namely collecting
all submissions from all publishers to a topic (while SSB is easy:
you only have to publish to your own log), then persisting all in-
coming messages and offering high-availability and durability. This
requires consensus-based services like RAFT [15], which internally
uses logs, or at least classic write-ahead logs (WAL) as they are
used in journaling file systems. In other words: today’s advanced
communication services like Cloud Pub/Sub rely on logs at various
places, but logs have not yet been recognized as a data structure
that should be exposed to the communicating parties.

5 RELATEDWORK
Abstracting away from events on wires is an old topic in computer
science. Agha’s Actor model [1] or Gelernter’s Linda system [7]
introduced mailbox and object store abstractions, which do not
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refer to hosts anymore, two decades before the advent of Infor-
mation Centric Networking (ICN). However, the communication
model described in this note is closer to networking (than these
two systems) and squarely falls into the ICN realm.

Specifically, the naming of items in SSB is literally the naming
of DONA [10], which suggested to use a ⟨P : L⟩ tuple, P being
the principal’s cryptographic ID and L a unique label chosen by
the principle (SSB uses the ED25519 public key as source ID and
globally unique SHA256 values as item references).

Other ICN architectures like NDN [19] have proposed hierarchi-
cally organized free-form names and a strict pull model, while the
communication model of this note is purely push-based. One could
be tempted to say that the local frontier advertisements of algorithm
(III) represent a pull request (for new content), but even these are
implemented as unsolicited broadcasts, and they are not propagated.
The consequences of NDN’s free-form names is another area of
difference where the monotonic sequence of log items automati-
cally provides base-level synchronization. In NDN, considerable
synchronization complexity (e.g. VectorSync [17]) comes from the
possibility of un-disciplined one-off production and requesting of
data with arbitrary names, which is inherited from the philosophy
of “independent datagrams”, typical for link-based networking.

Relating append-only logs to (transport) protocols is not as alien
as it seems at first sight, which we demonstrate with TCP. TCP’s
sequence number space gives a position to each byte of a (concep-
tual) log although it is called a stream. Bytes can only be appended
in TCP: any segment carrying the wrong frontier label will be
discarded by the TCP protocol entity in the same way the relay
algorithms (I) to (III) enforce that incoming perturbations are for-
warded only when extending the wave frontier. Creating a new
stream is brittle because there is no trust anchor (TCP segments
are not signed). TCP’s solution is to pick a random start sequence
number and establish the trustworthiness of that stream anew, for
every connection (using TLS and the PKI infrastructure, but see the
session resumption in tcpcrypt [2]), while in this note’s model the
trust relationship persists because of always using the same log.
The sliding window behavior is an optimization for trimming the
log, as TCP’s mindset is delivery-oriented (single bytes are shipped)
instead of synchronization-oriented logs (both parties have a copy
of the same stream/log content).

Finally we point out that Secure Scuttlebutt is not the only project
that has started to build applications on top of independent hash
chain-like data structures (as one way to implement logs), see e.g.
Holochain [9].

6 DISCUSSION
Full replication of all logs may work for small enough communities
(103) and low source rates but currently seems out of reach as
a global network service for communication among 109 or more
source identifiers and high data volumes. The three limiting factors
are bandwidth, memory, and their combination.

Bandwidth-wise, implementing a global broadcast-only model
means to stack all source production rates and to deliver the sum of
them to every observer. Memory-wise, the every-growing logs must
be persisted, on each relay, in order to cope with lost signals and in-
termittent connectivity. Finally, there is a blatant mismatch in terms

of bandwidth and latency between these two technology fields. It
would be wrong to construe from all this that the communication
model is wrong. On the contrary one should explore how close the
broadcast-only model can be approximated and which tradeoffs
have to be made to still benefit from the desirable properties.

In SSB, the hope is that by exploiting the social graph (peers
typically communicating with a low number of peers only, often
living in close geographic neighborhood), relays can limit log prop-
agating to a few regions and within the social neighborhood. Log
compaction would have to be introduced in order to curb memory
requirements. Both measures have unfortunate negative conse-
quences for privacy (revealing the social graph) as well as secu-
rity (old entries in the hash chain cannot be fully verified any-
more). Google Cloud Pub/Sub shows some possible trade-off: split a
source’s content into topics, have explicit subscription (and giving
up meta-data privacy), purge log entries immediately after com-
plete delivery and limit the retention duration to 7 days, among
others, but remains a middleware service.

Our more network-centric suggestion is to explore the spectrum
between the (extreme) replicated log approach described in this
note and the (extreme) point-to-point approach of today’s Internet.
In the same way that replication concepts have been added to
the Internet (e.g. Content Delivery Networks) one can add link
concepts to the broadcast-only model, for example aggregation
tunnels with transient source IDs that bundle replication traffic
across the atlantic and have a log height of only a few bandwidth-
delay products. Moreover, such an approach would fit well the still
futuristic light-path switching concept as well as batch- instead of
stream-oriented data delivery.

7 CONCLUSIONS
It is too early (and not the point of this note) to tell whether soliton-
like technologies are extensible to global scale and could be directly
coupled with application-level data structures, or not – this really
would be science fiction. But if there is such a “fiber-to-the app”
future, replicated append-only logs stick out as an interesting can-
didate around which network functionality should be organized.
Shifting research attention to global broadcast-only networks is
one recommendation that this note wants to give as well as raising
awareness for a new generation of distributed applications which
expect this communication model. Tarr’s Secure Scuttelbutt system
is just the beginning.
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