
Datacenter Congestion Control:
Identifying what is essential and making it practical

Aisha Mushtaq Radhika Mittal James McCauley
UC Berkeley University of Illinois at Urbana-Champaign UC Berkeley, ICSI

aisha@cs.berkeley.edu radhikam@illinois.edu jmccauley@cs.berkeley.edu

Mohammad Alizadeh Sylvia Ratnasamy Scott Shenker
MIT UC Berkeley UC Berkeley, ICSI

alizadeh@csail.mit.edu sylvia@cs.berkeley.edu shenker@icsi.berkeley.edu

This article is an editorial note submitted to CCR. It has NOT been peer reviewed.
The authors take full responsibility for this article’s technical content. Comments can be posted through CCR Online.

ABSTRACT
Recent years have seen a slew of papers on datacenter congestion
control mechanisms. In this editorial, we ask whether the bulk of
this research is needed for the common case where congestion con-
trol involves hosts responding to simple congestion signals from the
network and the performance goal is reducing some average mea-
sure of flow completion time. We raise this question because we
find that, out of all the possible variations one could make in con-
gestion control algorithms, the most essential feature is the switch
scheduling algorithm. More specifically, we find that congestion
control mechanisms that use Shortest-Remaining-Processing-Time
(SRPT) achieve superior performance as long as the rate-setting al-
gorithm at the host is reasonable. We further find that while SRPT’s
performance is quite robust to host behaviors, the performance of
schemes that use scheduling algorithms like FIFO or Fair Queu-
ing depend far more crucially on the rate-setting algorithm, and
their performance is typically worse than what can be achieved
with SRPT. Given these findings, we then ask whether it is prac-
tical to realize SRPT in switches without requiring custom hard-
ware. We observe that approximate and deployable SRPT (ADS)
designs exist, which leverage the small number of priority queues
supported in almost all commodity switches, and require only soft-
ware changes in the host and the switches. Our evaluations with
one very simple ADS design shows that it can achieve performance
close to true SRPT and is significantly better than FIFO. Thus, the
answer to our basic question - whether the bulk of recent research
on datacenter congestion control algorithms is needed for the com-
mon case - is no.

CCS Concepts
•Networks→ Packet scheduling; Data center networks; Trans-
port protocols; Network performance analysis;

Keywords
Congestion Control, TCP, SRPT

1. INTRODUCTION
In its never-ending quest to improve datacenter performance, the re-
search community has produced a continuing stream of papers on
datacenter congestion control. These proposals differ along many
dimensions, including how congestion is detected and signaled,

how hosts adapt to congestion, and how packets are scheduled by
the switches. The result is a cornucopia of datacenter congestion
control schemes embodying a wide variety of designs and display-
ing varying levels of performance. While these efforts have had
significant practical impact, they have not provided a systematic
understanding of the congestion control design space. As a result,
after all these years of promising individual proposals – each elo-
quently described and thoroughly evaluated – we as a community
do not have a broad overarching understanding of what factors are
most important in achieving good congestion control performance
in datacenters.

In this paper, we take a first step towards filling this void with
an initial factor analysis of datacenter congestion control schemes.
Our goal is not to invent new congestion control schemes, but to un-
derstand which factors are most important for good performance.
We focus on scenarios where congestion control involves hosts re-
sponding to simple congestion signals from the network and the
performance goal involves minimizing some average measure of
flow completion times (as opposed to more sophisticated resource
allocation goals [18, 22, 13] or meeting explicit deadlines [11, 25,
26]) and ask two questions:

1. What factors (i.e., which particular design decisions) are the
most essential to achieving good performance?

2. Can we deploy such designs easily?
To answer the first question, we decompose datacenter conges-

tion control schemes into two components: (i) scheduling (the order
in which packets are forwarded by network switches) and (ii) rate-
setting (how hosts respond to congestion and how that congestion is
signaled by the switches).1 Our factor analysis involves looking at a
variety of designs for each component. For scheduling algorithms,
we look at FIFO, Fair Queueing (FQ), Shortest-Job-First (SJF), and
Shortest-Remaining-Processing-Time (SRPT). For rate-setting, we
primarily look at TCP (which uses packet drops to signal conges-
tion), DCTCP (which uses ECN to signal congestion), and minTCP
(a minimal form of TCP introduced in [2]).2

1Note that this decomposition does not include designs such as
pHost [9], Homa [16], NDP [10], or ExpressPass [5] where the
endpoints engage in sophisticated interactions with each other to
determine when to send packets. Our focus is on schemes where
the ends adjust their rate in response to simple congestion signals
from the network.

2While we do not have the space to show them, we also have
results on PCC [7] and RCP [8].

ACM SIGCOMM Computer Communication Review Volume 49, Issue 3, July 2019

32



Our findings on this first question (Section 2) are quite clear.
The most important factor in achieving good performance is using
SRPT (or its close cousin, SJF) for packet scheduling. Our results
can be summarized in two statements: (1) A rate-setting scheme
achieves its best performance when used with SRPT, and (2) with
SRPT, a wide range of rate-setting schemes achieve near-optimal
performance.

Note that SRPT is neither necessary nor sufficient for good per-
formance. Clearly, when combined with obviously inappropriate
rate-setting schemes (e.g., not increasing the window size suffi-
ciently quickly when flows start, or having extremely long timeout
values), the resulting performance with SRPT can be significantly
suboptimal; thus, SRPT is not sufficient. In addition, there are sev-
eral congestion control proposals that mimic SRPT by coordinat-
ing host behavior. For instance, pHost [9] approximates SRPT
by precisely scheduling packet transmissions from the receivers.
Homa [16] adopts the same approach, and additionally, uses a few
switch priority queues to improve the approximation accuracy for
short flows. With careful tuning, these schemes can perform very
well; thus, SRPT at switches is not necessary. However, our point
is that with SRPT, near-optimal performance is easy to achieve.

The second question arises because the SRPT scheduling algo-
rithm is not available on commodity switches, and is not even sup-
ported by newer scheduling mechanisms like PIFO [23]. Moreover,
the remaining-bytes information needed for SRPT is not available
in today’s transport protocols. Thus, it is not clear whether SRPT-
inspired designs are easily deployable. However, our answer to
this second question is a resounding “yes”. As discussed in Sec-
tion 3, one can easily modify hosts to supply an approximation to
the remaining-bytes information, and one can leverage the priority-
scheduled FIFO queues present on most commodity switches to
roughly emulate SRPT scheduling. Thus, we claim that approxi-
mate and deployable SRPT designs exist (we call them ADS de-
signs), which only require simple software changes in hosts and
switches.

The idea of using SRPT is hardly new, as it was introduced in
pFabric [2], and the notion that one can use a fixed number of stan-
dard priority-scheduled queues to emulate SRPT was discussed in
[2, 3, 9, 17, 14]. Our goal in writing this paper was twofold. First, it
was to observe that (based on our factor analysis) SRPT is the one
essential aspect of pFabric’s design, and everything else could be
modified in various ways while maintaining near-optimal perfor-
mance. Second, and more importantly, our goal was to argue that
for minimizing some average measure of FCT in datacenters, we
essentially have all the mechanisms we need. That is, we now know
that SRPT is the crucial factor in achieving good performance, and
that we now have ways of deploying reasonable approximations
to SRPT without requiring hardware changes to routers. While
more work is needed to optimize such techniques (see Section 4),
these ADS designs are clearly better than the status quo. Thus, our
message to the commercial community is simple: in order to mini-
mize average measures of FCT in datacenters, we should be rapidly
moving towards adoption of the ADS approach. Our message to the
research community is even simpler: if you are interested in min-
imizing average measures of FCT in datacenters, look no further
than ADS.

2. FACTOR ANALYSIS

2.1 General Methodology
In our investigation, we focus on the most widely accepted mea-

sure of performance: minimizing flow completion times (FCT).
However, rather than focusing primarily on the average FCT (which
is often dominated by the completion time of the largest flows), we
use the average slowdown (comparing the flow completion time of
each flow to how long it would have taken to complete if it were
sent at line-rate [2, 3, 9]) as our basic measure of performance
because it captures the behavior across a spectrum of flow sizes.
However, we also report the average FCT and tail FCT.

We consider the following rate-setting schemes for hosts and
scheduling algorithms for switches, as listed below.
Rate-Setting Schemes:
(i) minTCP: This is the rate control scheme used in pFabric [2],
which starts sending at line rate and uses only timeouts to detect
congestion.
(ii) TCP: We use TCP SACK, which employs duplicate ACKs in
addition to timeouts to detect losses, and uses AIMD for rate con-
trol.
(iii) DCTCP: It has the same rate control as TCP but additionally
uses the fraction of ECN marks to signal congestion.
Scheduling Algorithms:
(i) FIFO: First In First Out scheduling.
(ii) FQ: Fair Queuing as described in [6].
(iii) SJF: Shortest Job First. Flows are prioritized based on their
absolute size (shorter flows get higher priority3).
(iv) SRPT: Shortest Remaining Processing Time, as used in pFab-
ric [2]. Flows with less remaining time (fewer outstanding bytes)
get higher priority.3 The switches also implement a starvation pre-
vention mechanism where the earliest arriving packet of the flow
containing the highest priority packet is selected for transmission.

2.2 Experimental Setup
Topology. We use the same spine-leaf topology as in [2], which in-
terconnects 144 hosts through 9 leaf switches connected to 4 spine
switches in a complete bipartite graph. It is a full bisection band-
width fabric, with each leaf switch having sixteen 10 Gbps down-
links (to the hosts) and four 40 Gbps uplinks (to the spine). The
bandwidth delay product (BDP) is roughly 14 packets (with each
packet carrying 1500 bytes). The end-to-end round-trip time (RTT)
across the spine is 16µs. We set the buffer sizes at the switches and
the hosts to 500 KB per port (shared among queues, if any). We use
flow-based ECMP [12] to balance load.
Workload. We consider loads where flows arrive according to a
Poisson process and are sent from a random source to a random
destination server. For our default scenario we use a heavy-tailed
distribution [4] where 50% of the flows are of 1 KB (1 packet), 35%
are between (1 KB, 200 KB] and 15% are between (200 KB, 3 MB].
The inter-arrival time between flows is computed such that the av-
erage link utilization is 70%. To test the robustness of our results,
we also try other workloads and utilization levels as discussed in
§2.3.2.
Default parameters. We set the initial window sizes to equal the
bandwidth-delay-product (14 packets for our topology), and the
minimum timeout is set to three times the two-way network propa-

3ACKs are assigned the highest priority, as in [2].

ACM SIGCOMM Computer Communication Review Volume 49, Issue 3, July 2019

33



(a) Average Slowdown (b) Average FCT (c) 99%ile FCT

Figure 1: Results for our default scenario (a heavy tailed distribution running on a fat-tree topology at 70% utilization)

gation delay (3 × RTT ). The ECN threshold for DCTCP is set to
15 packets.
Simulation Methodology. We run simulations using the ns-2 [19]
simulator. For our default scenario, we run the simulations for a
total of 1.5 s of simulated time, recording the FCTs of all flows that
started between 0.05 s and 0.15 s. This results in a total of roughly
44000 flows being considered for our default scenario.

2.3 Results

2.3.1 Results on Default Scenario
Average Slowdown. Figure 1(a) shows the slowdowns for our
default scenario, with every combination of scheduling algorithm
(from the set {FIFO, FQ, SJF, SRPT}) and rate-setting scheme
(from the set {minTCP, TCP, DCTCP}). The following are the key
takeaways.
(1) Comparing performance across scheduling algorithms: Over-
all, SRPT performs much better in terms of slowdown than FIFO
or FQ. For example, TCP performs 9.7× better with SRPT than
with FIFO and 1.8× better with SRPT than with FQ. Although the
relative difference between FIFO and SRPT is smaller for the more
sophisticated DCTCP scheme, it is still as high as 2.2×. minTCP
(which is by far the least sophisticated) varies by 70× across the
scheduling schemes.
(2) Comparing performance across rate-setting schemes:
SRPT is extremely robust, in that the rate-setting scheme typi-
cally has only minimal impact on performance when using SRPT
scheduling; various rate-setting schemes have slowdowns within
5% of each other with SRPT. In contrast, the performance with
FIFO scheduling is highly sensitive to the rate-setting scheme.
(3) SRPT vs SJF: The performance of SJF is very close to SRPT
for rate-setting schemes that back off reasonably in the face of con-
gestion, such as TCP and DCTCP. The slowdown of TCP with SJF
is within 5% of TCP with SRPT scheduling, while that of DCTCP
is within 1.5% of DCTCP with SRPT. However, the difference be-
tween SRPT and SJF with minTCP is significantly higher. This
is because minTCP relies only on timeouts to detect congestion
and back off. Hence, long flows (which, in the absence of SRPT’s
starvation prevention mechanism, have the lowest absolute prior-
ity with SJF) continue to have high packet losses (and therefore
repeated timeouts) even when close to finishing.4

Average FCT. Figure 1(b) shows the average FCTs obtained for the

4This is in contrast to what is reported in [2], but there are differ-
ences in our default simulation settings, such as no packet-spraying
and large packet buffers, that might explain the discrepancy.

default scenario. The general conclusions that we drew for average
slowdowns above hold for average FCTs as well.
Tail FCT. For completeness, we also looked at the tail FCT (which
is dominated by the behavior of long flows). Given that SRPT/SJF
prioritize shorter flows over the long flows, one would expect these
scheduling schemes to have a huge negative impact on the tail be-
havior. Very surprisingly, for most cases we simulated SRPT per-
formance is better than other scheduling mechanisms even for the
tails of the distributions. Figure 1(c) shows the tail (99th percentile)
FCTs for our default scenario. SRPT continues to perform the best
when used with DCTCP and minTCP. Though the best performer
for tail FCT with TCP is FIFO, SRPT performance stays within
8% of it. However, the tail FCT in the datacenter is somewhat sen-
sitive to rate-setting scheme even with SRPT (for example, note
the difference between TCP and DCTCP). So while SRPT is not
as robust with respect to tail performance as it is for the average
performance, it performs reasonably well.5

2.3.2 Evaluating Robustness of General Results
We tested the robustness of our high level trends by varying sev-

eral aspects of our experimental scenario.
Workload: We considered a variety of workloads, including the
Facebook workload from [21], the web search workload from [1],
and some non-conventional workloads: a uniform distribution with
flow sizes picked with equal probability from a set of fixed values
in [1 KB, 3 MB], a bimodal distribution where 50% of the flows are
of size 2 KB and 50% of the flows are of size 2 MB, and a point
distribution where all flows are of size 2 MB.
Utilization: We varied the link utilization levels from our default
value of 70% to lower values of 30% and 50%.
Varying Parameters: We repeated the experiments for our default
scenario by varying the initial congestion window between 2 to 21
packets (our default value being BDP = 14 packets). We also
varied the minimum timeout from 16µs to 1ms (RTT being 16µs).

For all these cases, our basic results remain unchanged, in that
rate-setting schemes performed best with SRPT, and any “reason-
able” rate-setting scheme resulted in nearly optimal performance
when used with SRPT. However, when the rate-setting scheme was
unreasonable (e.g., extremely high timeout value), the results were
far from optimal.

5We should note that tail FCT is a questionable measure for
these workloads, as it only reflects the treatment of the few very
longest flows. Thus, we do not view the desirability of SRPT being
impacted by its somewhat imperfect performance here.

ACM SIGCOMM Computer Communication Review Volume 49, Issue 3, July 2019

34



3. APPROXIMATE & DEPLOYABLE SRPT
While the previous section makes clear that SRPT is essential,

it has what would seem to be a fatal flaw: no current switches are
capable of supporting SRPT at line rate. Fortunately, there are ap-
proximations of SRPT which are amenable to implementation in
commodity hardware that perform almost as well as true SRPT. In
the following subsection, we discuss the ADS design space, and
touch on the various related work in it. Following that, we focus on
our own contribution to this space which assumes that the software
(but not the hardware) of commodity switches can be changed. We
end the section by showing results from this design.

3.1 ADS Design Space
As a reminder, in true SRPT, the switch must transmit the oldest

packet from the flow with the fewest remaining bytes. Assuming
that the remaining-bytes information is contained in each packet,
the switch must both (i) do priority scheduling at arbitrarily fine
granularity, and (ii) pick the oldest packet from the flow whose
packet is at the head of the queue (to prevent starvation of old pack-
ets). Commodity switches cannot support either of these necessary
behaviors.

Acknowledging this, the pFabric paper [2] described a prelimi-
nary effort to approximate this behavior using a feature that many
commodity switches do support – a small number (often eight) of
independent priority-scheduled queues, where all packets from a
higher priority queue are sent before packets from lower prior-
ity queues. Packets with similar numbers of remaining bytes are
binned together into the available queues using some heuristic, a
process we call priority mapping.6 To clarify our terminology, we
assume that the field that goes into the packet is called its “prior-
ity”, and this priority is used (by the priority mapping) to select
the appropriate queue for that packet based on a set of computed
thresholds.

As one moves beyond the preliminary ADS work done in [2],
however, it becomes clear that there is a large design space of pos-
sible approximations, the dimensions of which we explore below.
Estimation of Flow Lengths. SRPT requires information about
flow lengths in order to determine priority. However, this infor-
mation does not exist in typical transport protocols (and is, in fact,
somewhat counter to the “stream” service model provided by, e.g.,
TCP), and so must be introduced in some way. pFabric suggests
the addition of a new socket option whereby a modified application
can provide a size hint to the network stack, which then inserts this
hint into the packet header. PIAS [3] suggests an alternate tech-
nique which does not require modifying applications and works in
cases where a flow size is not known a priori: essentially, flows are
assumed short until proven long (i.e., priorities start high and shift
lower as the flow goes on). In the next subsection, we describe yet
another approach. We should note that a recent paper proposes a
new and more accurate algorithm for estimating flow lengths [24];
however, our goal here is not to achieve the most accurate estima-
tion, but to achieve good congestion control results which (as our
later results show) does not require a highly accurate estimation.
How the priority mappings are computed. Somehow, a map-
ping must be made from a large priority space (i.e., the space of
all possible flow sizes) to a small number of queues. pFabric [2]
and PIAS [3] present their own analytical approaches. PASE [17]

6Note that one need not implement starvation-prevention ex-
plicitly when using this approach.

leverages hierarchy in the topology by employing a hierarchical set
of algorithmic arbitrators distributed through the network which at-
tempt to put a single flow (e.g., the shortest one) in the high priority
queues, with other queues holding packets from successively lower
priority flows. In contrast, pHost [9] and Homa [16] compute pri-
orities entirely at hosts. In §3.2, we examine an extremely simple
heuristic to compute priority mapping at each switch.
Traffic measurement. No matter the exact details of how the
priority mappings are computed, doing so requires some sort of
measurement of the flow size distribution. This raises the issue
of where these measurements are taken. [9], for example, takes
measurements only at the hosts, and both [2] and [3] assume only
global datacenter-wide measurement while acknowledging that this
is suboptimal, as traffic may not be uniform across the topology. In
the next subsection, we describe a practical scheme in which mea-
surements can be taken at each switch.
Measurement/update frequency. If the computation is expensive
or centralized, this may limit the update frequency. PIAS, for exam-
ple, acknowledges the utility of periodic updating, but specifically
leaves the issue to future work. The scheme we describe in the next
subsection can do updates dynamically, and in our evaluation we
examine both dynamic updating and an extreme example of non
dynamic updating.
Per-switch or network-wide thresholds. Is the priority mapping
applied globally, or per-switch? [9], [3], and the preliminary work
in [2] all examine the case where all switches process a given packet
at the same priority. In the scheme we describe in §3.2, each switch
does its own measurement and then computes independently based
on its local measurements, so each switch may arrive at different
thresholds if the traffic is not uniform.
How many queues are used. While many switches have eight
queues, not all may be available for ADS. [14] in particular focuses
on this issue by making good performance with only two queues
an essential part of their design. We later evaluate our own scheme
with both two and eight queues.

3.2 Our Approach
The overarching message of this paper is that we believe that

many points in the ADS design space are very promising, as sug-
gested by the related work. Here, we contribute to this gathering
set of evidence by choosing some additional points in the space,
fleshing out a practical design, and providing some preliminary
evaluation. We make the following assumptions in the name of
practicality:
No application modifications. This primarily affects how flow
sizes are estimated, as it rules out the technique where applications
provide flow size hints to the networking stack. To do this, we
track the number of bytes the application has written to a socket
which are still outstanding at the sender.7 We use this as an esti-
mate of the remaining flow size, capping it at 2MB and configuring
the network stack to have write buffers of at least 3MB. By pro-
viding at least an extra 1MB of “slack space”, typical applications
which simply write as much and as quickly as the OS allows will
stay above the 2MB threshold and therefore receive the minimum
priority (all such flows are simply treated as “long”). Byte-level
granularity is not necessary, as most packets will be sized to fit the

7This could be used in bare-metal datacenters and container-
based datacenters, but would require modifications to tenant soft-
ware for use in VM-based datacenters.

ACM SIGCOMM Computer Communication Review Volume 49, Issue 3, July 2019

35



MTU, so we divide the number of outstanding bytes by the MTU.
Commodity switching hardware. We attempt to target commod-
ity switching hardware. We assume that switches have tables that
can match on common fields, and that two operations can be per-
formed when a packet matches a table entry: (i) a packet counter
associated with the entry can be incremented, and (ii) the egress
queue number for the packet can be read from the associated ta-
ble entry. We further assume that the control plane software on
such switches can be modified in order to query the counters and
update the table entries and associated queue numbers. As with
all the approximations we discuss in this section, we assume there
are a number of individual FIFO queues where the scheduling be-
tween queues is strict priority. Finally, we must put the remaining
flow size estimate (priority) into the packet somewhere. Again, to
facilitate implementation on switching hardware without flexible
matching hardware, we chose to co-opt the VID field of the 802.1Q
VLAN header. This allows 12 bits, which is more than enough to
reach our 2MB cap with 1500 byte packets.8

Within the switch, for each port, there are table entries contain-
ing all possible values for this field, and matching on this field loads
the appropriate queue number. This table can be pre-populated stat-
ically if the workload distribution is known and is relatively stable.
For this, we use the equal split heuristic originally discussed in [2]
to map priorities, which attempts to equalize the number of packets
in each queue.

We can use this same heuristic to dynamically populate this in-
formation in the switch. Thus, one can have “static” schemes,
where the priority mapping is fixed (or changes on very slow time
scales), or dynamic schemes where the priority mapping is updated
quite rapidly (e.g., many times per second). For the dynamic
scheme, the switch records the frequency of packet priorities it sees
over a fixed time interval I . This gives us a sequence of distribu-
tions (i.e., a histogram) of the frequency of the packet priorities
seen in an interval. After each time interval the resulting histogram
is passed to the control plane of the switch to compute the priority
mapping, and the priority counters are reset. The switch control
plane uses a sliding window of the last W histograms to compute
the priority mappings using the equal split heuristic described be-
fore.

Note that these table entries are the motivation for the 2MB
cap on remaining flow size as well as the conversion from bytes-
remaining to MTUs-remaining: doing so limits the required num-
ber of entries to about 1400 per port (2MB cap / 1500 byte MTU
≈ 1400 possible values). Granted, this is still a relatively large ta-
ble: a 48 port switch would require about 67,200 entries. However,
we believe this to be well within reach for commodity hardware,
as many switches already support hundreds of thousands of exact-
match entries.

In the following subsection, we evaluate an implementation of
this design in the ns-2 network simulator [19], but first we wish to
note that we also completed a preliminary “real world” implemen-
tation of both components. For the host portion, we implemented
it as changes to the Linux TCP stack, comprised of the addition of
about 20 LOC. As we do not have access to any proprietary switch
SDKs, we targeted our switch prototype against the P4 bmv2 [20]
software switch using 132 lines of P4 code. Although P4 is quite
flexible, we note again that our design uses only fairly straightfor-

8Depending on context, one may store this data elsewhere in the
packet, for example, in a VXLAN [15] header as [14] advocates.

Figure 2: Average Slowdowns with SRPT emulation for our
default heavy-tailed workload at 70% utilization.

ward operations: it reads a value from a common field, does an
exact match lookup in a table, increments a packet counter, and
loads the queue number. All of these operations are also available
in OpenFlow switches, and we could have easily chosen OpenFlow
for our implementation. Moreover, we believe many switches sup-
port the required functionality, and – with appropriate access to
their internals – could also implement this design.

3.3 Results
We now present our results for both static and dynamic approxi-

mation of SRPT as described in §3.2. We simulate the static scheme
by recording the priority values seen by each switch when run-
ning true SRPT with the corresponding workload and then using
the equal-split heuristic to compute the priority mapping. For the
dynamic scheme, we set the update time interval I to be 5ms and
the sliding window size W for the histograms to 10.

While most commodity switches typically have eight priority
scheduled queues, not all of them may be available for use in a
datacenter (for instance, the datacenter network operators might
want to use different queues to differentiate between various traf-
fic classes). We therefore present our results for both when we use
all of the eight available queues and when we use only two queues
for ADS. For comparison, we also show the corresponding results
obtained with FIFO and with true SRPT as evaluated in §2.

3.3.1 Default Scenario
Figure 2 shows the average slowdowns obtained from our ADS

approach. The first and the last bars show the performance with
FIFO and true SRPT as baselines. The second and the third bars
show the ADS results when only two queues are used with static
and dynamic mapping respectively. The fourth and fifth bars shows
the corresponding results with eight queues. The following are the
key takeaways from these results:
(1) With eight queues, our ADS performs almost as well as true
SRPT, with the average slowdowns being only 6.6% higher than
true SRPT.
(2) ADS with two queues is not as good as that with eight queues,
resulting in about 3× higher average slowdowns. In results not
shown, with four queues the average slowdown is only 13% higher
than that with eight queues.
(3) While there was little difference between the static and dynamic
scheme for ADS with eight queues, the dynamic scheme performs
better than the static scheme with two queues.
(4) ADS with even two queues performs significantly better than
FIFO. The average slowdown obtained from dynamic scheme for
ADS with two queues is more than 3× smaller than FIFO.

ACM SIGCOMM Computer Communication Review Volume 49, Issue 3, July 2019

36



Figure 3: Average Slowdowns with SRPT emulation for uni-
form workload at 70% utilization.

Figure 4: Average Slowdowns with SRPT emulation for the
Facebook workload at 70% utilization.

We would like to stress on this last point. While we might not be
able to match the SRPT performance in a practical setting where
only few priority queues are available, using even one extra queue
gives significant improvement over FIFO.

3.3.2 Robustness
Varying Workload We evaluated our ADS schemes for the variety
of workload distributions mentioned in §2.3.2. We present results
for two of these. Figure 3 shows the ADS results for the uniform
distribution where flow sizes are picked with equal probability from
a set of fixed values in [1 KB, 3 MB]. Figure 4 shows the ADS result
for the heavy-tailed distribution obtained from Facebook [21] with
flow sizes ranging from 1KB to 100MB. We find that our main
takeaways from §2.3.2 hold for these workloads (which have very
different characterisitics) as well.
Using a Different Mapping for Static ADS: We also tested the
impact of using a different workload distribution to compute static
priority mappings for ADS. More precisely, we used the static map-
ping computed for our default heavy-tailed workload to approxi-
mate SRPT for other workloads. To our surprise, we found that
for many realistic workloads (such as for Facebook and web search
workloads), using a priority mapping from another workload per-
formed almost as well as when the static mapping was computed
from the actual workload. This indicates that using a fixed prior-
ity mapping computed from a heavy tailed workload divides the
remaining flow size values across the fixed priority queues in a
robust manner, such that the same mapping performs well across
many different workloads. Note, however, that using a fixed static
mapping might not work well across all workloads. For instance,
one can come up with workloads where all of the flows would end
up being mapped to the same priority queue, thus boiling down to
FIFO.
Varying Parameters for Dynamic ADS: We tested the impact of
varying the update interval I and the sliding window sizeW for the

dynamic SRPT approximation. We varied the former from 0.5ms
to 100ms and observed that it only affected the convergence time
(the longer the update interval, the longer it takes for the switch to
update the priority mappings), but had negligible impact on perfor-
mance after convergence. We varied W between 1 and 50 and that
too had little impact on the performance.

4. CONCLUSION
Our results lead us to conclude that there are a range of ADS de-

signs that perform far better than FIFO, and in some cases reason-
ably close to true SRPT, for the goal of minimizing some average
measure of FCT. Moreover, these designs could be deployed today.
We urge the commercial community to begin testing these designs
under operational conditions (because simulations can always miss
some crucial aspect of reality) and move towards deployment.

For the research community, when one restricts attention to min-
imizing some average measure of FCT in datacenters, we see few
major research issues left to tackle. However, there are some re-
maining open questions about ADS designs, which we list below.

• What are the limits of our ADS approach? That is, are there
realistic load patterns where our conclusions do not hold?
• Is there an adaptive priority mapping algorithm that does signif-

icantly better than our simple scheme?
• Are there any ADS designs that do significantly better (than our

current designs) with 2 queues? We have not explored this aspect
in any depth, so there is an opportunity for improvement.

5. REFERENCES
[1] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,

B. Prabhakar, S. Sengupta, and M. Sridharan. Data center tcp
(dctcp). ACM SIGCOMM computer communication review,
41(4):63–74, 2011.

[2] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown,
B. Prabhakar, and S. Shenker. pfabric: Minimal near-optimal
datacenter transport. ACM SIGCOMM Computer
Communication Review, 43(4):435–446, 2013.

[3] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang.
PIAS: information-agnostic flow scheduling for commodity
data centers. In 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 15), pages
455–468, Oakland, CA, 2015. USENIX Association.

[4] T. Benson, A. Akella, and D. Maltz. Network Traffic
Characteristics of Data Centers in the Wild. In Proc. ACM
Internet Measurement Conference (IMC), 2012.

[5] I. Cho, K. Jang, and D. Han. Credit-scheduled delay-bounded
congestion control for datacenters. In Proceedings of the
Conference of the ACM Special Interest Group on Data
Communication, pages 239–252. ACM, 2017.

[6] A. Demers, S. Keshav, and S. Shenker. Analysis and
simulation of a fair queueing algorithm. In ACM SIGCOMM
Computer Communication Review, volume 19, pages 1–12.
ACM, 1989.

[7] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira.
Pcc: Re-architecting congestion control for consistent high
performance. In 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 15), pages
395–408, 2015.

ACM SIGCOMM Computer Communication Review Volume 49, Issue 3, July 2019

37



[8] N. Dukkipati and N. McKeown. Why flow-completion time
is the right metric for congestion control. ACM SIGCOMM
Computer Communication Review, 36(1):59–62, 2006.

[9] P. X. Gao, A. Narayan, G. Kumar, R. Agarwal,
S. Ratnasamy, and S. Shenker. pHost: Distributed
Near-Optimal Datacenter Transport Over Commodity
Network Fabric. In Proceedings of the CoNEXT, 2015.

[10] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W.
Moore, G. Antichi, and M. Wójcik. Re-architecting
datacenter networks and stacks for low latency and high
performance. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, pages
29–42. ACM, 2017.

[11] C.-Y. Hong, M. Caesar, and P. Godfrey. Finishing flows
quickly with preemptive scheduling. ACM SIGCOMM
Computer Communication Review, 42(4):127–138, 2012.

[12] C. E. Hopps. Analysis of an equal-cost multi-path algorithm,
2000.

[13] A. Kabbani, M. Alizadeh, M. Yasuda, R. Pan, and
B. Prabhakar. Af-qcn: Approximate fairness with quantized
congestion notification for multi-tenanted data centers. In
Proceedings of the 2010 18th IEEE Symposium on High
Performance Interconnects, HOTI ’10, pages 58–65,
Washington, DC, USA, 2010. IEEE Computer Society.

[14] Y. Lu, G. Chen, L. Luo, K. Tan, Y. Xiong, X. Wang, and
E. Chen. One more queue is enough: Minimizing flow
completion time with explicit priority notification. In
INFOCOM, 2017 Proceedings IEEE, 2017.

[15] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger,
T. Sridhar, M. Bursell, and C. Wright. Virtual eXtensible
Local Area Network (VXLAN): A Framework for
Overlaying Virtualized Layer 2 Networks over Layer 3
Networks. IETF RFC 7348 (Informational), 2014.

[16] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout. Homa:
A receiver-driven low-latency transport protocol using
network priorities. In Proceedings of the 2018 Conference of
the ACM Special Interest Group on Data Communication,
pages 221–235. ACM, 2018.

[17] A. Munir, G. Baig, S. M. Irteza, I. A. Qazi, A. X. Liu, and
F. R. Dogar. Friends, not foes: synthesizing existing transport
strategies for data center networks. In ACM SIGCOMM
Computer Communication Review, volume 44, pages
491–502. ACM, 2014.

[18] K. Nagaraj, D. Bharadia, H. Mao, S. Chinchali, M. Alizadeh,
and S. Katti. NUMFabric: Fast and Flexible Bandwidth
Allocation in Datacenters. In Proc. ACM SIGCOMM, 2016.

[19] The network simulator - ns-2. http://www.isi.edu/nsnam/ns/.
[20] P4 behavioral model v2 (bmv2).

http://github.com/p4lang/behavioral-model.
[21] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren.

Inside the social network’s (datacenter) network. In
Proceedings of the 2015 ACM Conference on Special Interest
Group on Data Communication, SIGCOMM ’15, pages
123–137, New York, NY, USA, 2015. ACM.

[22] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha.
Sharing the data center network. In Proceedings of the 8th
USENIX Conference on Networked Systems Design and
Implementation, NSDI’11, pages 309–322, Berkeley, CA,

USA, 2011. USENIX Association.
[23] A. Sivaraman, S. Subramanian, A. Agrawal, S. Chole, S.-T.

Chuang, T. Edsall, M. Alizadeh, S. Katti, N. McKeown, and
H. Balakrishnan. Towards programmable packet scheduling.
In Proceedings of the 14th ACM workshop on hot topics in
networks, page 23. ACM, 2015.

[24] V. Ðukić, S. A. Jyothi, B. Karlaš, M. Owaida, C. Zhang, and
A. Singla. Is advance knowledge of flow sizes a plausible
assumption? In 16th {USENIX} Symposium on Networked
Systems Design and Implementation (NSDI 19), pages
565–580, 2019.

[25] B. Vamanan, J. Hasan, and T. Vijaykumar. Deadline-aware
datacenter TCP (d2tcp). ACM SIGCOMM Computer
Communication Review, 42(4):115–126, 2012.

[26] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron.
Better never than late: Meeting deadlines in datacenter
networks. In Proc. of ACM SIGCOMM, 2011.

ACM SIGCOMM Computer Communication Review Volume 49, Issue 3, July 2019

38

http://www.isi.edu/nsnam/ns/
http://github.com/p4lang/behavioral-model

	Introduction
	Factor Analysis
	General Methodology
	Experimental Setup
	Results
	Results on Default Scenario
	Evaluating Robustness of General Results


	Approximate & Deployable SRPT
	ADS Design Space
	Our Approach
	Results
	Default Scenario
	Robustness


	Conclusion
	References

