
Deprecating The TCP Macroscopic Model
Matt Mathis
Google, Inc

mattmathis@google.com

Jamshid Mahdavi
WhatsApp, Inc

jamshid@whatsapp.com

This article is an editorial note submitted to CCR. It has NOT been peer reviewed.
The authors take full responsibility for this article’s technical content. Comments can be posted through CCR Online.

ABSTRACT
The TCP Macroscopic Model will be completely obsolete soon. It
was a closed form performance model for Van Jacobson’s land-
mark congestion control algorithms presented at Sigcomm’88. Ja-
cobson88 requires relatively large buffers to function as intended,
while Moore’s law is making them uneconomical.

BBR-TCP is a break from the past, unconstrained by many of the
assumptions and principles defined in Jacobson88. It already out
performs Reno and CUBIC TCP over large portions of the Internet,
generally without creating queues of the sort needed by earlier
congestion control algorithms. It offers the potential to scale better
while using less queue buffer space than existing algorithms.

Because BBR-TCP is built on an entirely new set of principles, it
has the potential to deprecate many things, including the Macro-
scopic Model. New research will be required to lay a solid founda-
tion for an Internet built on BBR.

CCS CONCEPTS
• Internet performance;

KEYWORDS
TCP Performance, BBR-TCP, Performance Modeling

1 INTRODUCTION
The TCP Macroscopic Model[1] estimates that Reno TCP perfor-
mance is proportional to one over the square root of the loss prob-
ability. It was derived from the algorithms described in Van Ja-
cobson’s landmark paper “Congestion Avoidance and Control”[2]
This paper, and the principles of window based congestion control
defined within, form the foundation of most congestion control
work for the operational Internet over the last three decades. It is
so well known that it is often cited without a formal reference as
Jacobson88.

Jacobson88 describes the Congestion Avoidance algorithm (from
[3]) and Slowstart algorithms. Our model estimated an upper bound
on the average performance of the Additive Increase / Multiplica-
tive Decrease behavior of the Congestion Avoidance algorithm.
Others have provided more refined estimates which also modeled
other aspects of TCP behavior, such as receiver window limits and
timeouts[4].

Over the years, the congestion control algorithms in Jacobson88
evolved into the modern Reno[5], Compound[6] and CUBIC[7] TCP
variants which are commonly seen in the Internet today.

At the time our interests at the Pittsburgh Supercomputing Cen-
ter were focused on maximizing the performance of TCP over high-
speed networks1. In pursuit of this, we standardized TCP Selective
Acknowledgment[11], which permitted TCP to maintain its self
clock across round trips with multiple packet drops. In the years
since then, a lot more work has been done but now we argue that
Jacobson88 and the Macroscopic Model have been pushed as far as
they can take us.

In this editorial, we examine the impact of “Bottleneck Band-
width and Round-trip propagation time” (BBR) TCP[12, 13] on past
research on congestion control. BBR is a new approach to conges-
tion control based on an entirely new set of principles. In a very
real sense BBR is a “redo” of Jacobson88. BBR makes the Macro-
scopic Model irrelevant, and calls into question three decades of
research that is explicitly or implicitly based on the assumptions in
Jacobson88.

2 CLOCKING IN TCP
In addition to the congestion algorithms described above, Jacob-
son88 introduced two key design principles: packet conservation
and self clock.

“Packet conservation” is the explicit constraint that packets could
only be sent into the network when earlier packets have left the net-
work. A data packet sent by the sender would: traverse the network
to the data receiver; the receiver generated an acknowledgement
(ACK); which traversed back through the network; granting permis-
sion for the sender to release additional packets. The sender usually
sent the same number of packets as the receiver reported were
delivered, maintaining an approximately fixed number of packets
in flight. The congestion control algorithm periodically adjusted
the number of packets in flight by sending fewer or extra packets
in response to some ACKs.

Packet conservation naturally tends to implement a self clock.
While TCP is successfully maintaining a full network, there will typ-
ically be a standing queue of packets at the dominant bottleneck. As
the packets pass through the bottleneck and traverse the network
they maintain an approximately fixed-sized queue at the bottleneck.
This flow of packets provides a “clock” for the entire communica-
tion system, such that the bottleneck is busy and everything else
happens just in time to keep the bottleneck busy.

Jacobson88 worked well in a world where there were no delay-
sensitive applications and memory was cheap enough that most

1For perspective, at that time our highest speed network was a 800 Mbps point to
point connection between two supercomputers in a data center[8]. Our "high-speed"
LAN was 100 Mbps FDDI[9] and our shared connection the vBNS[10] was OC-3 (155
Mbps), which was later upgraded to OC-12 (622 Mbps).

ACM SIGCOMM Computer Communication Review Volume 49 Issue 5, October 2019

63



network devices had large enough queue buffers at the bottleneck
to provide a good, stable self clock.

The key parameter of a network queue is drain time: how long
does it take for a full queue to completely drain through the bot-
tleneck if no additional packets arrive? If the drain time is slightly
larger than the path round trip time it turns out to be fairly easy for
Jacobson88 style congestion control to maintain a queue at the bot-
tleneck and attain 100% utilization across a wide range of conditions.
All of the old TCP variants could do this. Newer algorithms, such
as CUBIC[7], substantially improve on Jacobson88 under less ideal
conditions, but don’t generally change the underlying self-clock
and packet conservation principles.

However, Moore’s law dooms large buffers deep in the interior of
the Internet. The problem is that maintaining constant drain time
in the presence of ever increasing interface (link) speeds requires
that the pace of progress for the queue buffer memory exceeds
Moore’s law. Colloquially Moore’s law states that the product of
speed (clock rate) and complexity (device count) doubles every 18
months. Consider the following thought experiment: Internet data
rates have been doubling roughly every 2 years (slightly slower
thanMoore’s law). Tomaintain constant drain time the queue buffer
memory has to double in size every 2 years. It also has to double
in speed every 2 years. With data rates doubling every 2 years, the
speed-complexity product for buffer memory has to double every
year to maintain constant drain time. There is no cost effective
way to do this, and as a consequence over a span of decades the
available drain times have been dropping for the fastest devices on
the network.

For the fastest network switches (100Gb/s per port and above)2
drain times are now sub millisecond[14]. These queues are not large
enough to shift packets in time by as much as a millisecond, and as
a consequence self clock is unable to smooth out colliding bursts
from different senders. Furthermore, the use of packet loss as the
primary congestion signal requires sufficient buffering to allow for
multiplicative backoff without wasting link bandwidth.The investi-
gation of buffering requirements has been an active research area
for 25 years, without any convincing resolution[15–19]. The un-
derlying assumption in Jacobson88, that the network has sufficient
buffering, is not sustainable given the economic realities of scaling
network buffer sizes.

At the same time the Internet edge has developed the opposite
problem: in home networks where data rates are relatively low (typ-
ically 1 Gb/s and below), it is easy to build large buffers with plenty
of bandwidth. These devices can have queue drain times in the sec-
onds or tens of seconds range, a problem known as BufferBloat[20].

There is a common theme here: Jacobson88 does not manage
bottleneck queue occupancy, and in fact controls against queue
full, rather than the onset of queueing. Although the research in
alternatives goes back a long way[21], none have met the bar for
wide deployment.

3 BBR
BBR’s genesis came from Van Jacobson himself, reflecting on the
failings of Jacobson88 in modern networks.

2There are routers on the market that have long drain times at these rates but they
are extremely expensive.

BBR takes a substantially different approach to congestion con-
trol. It uses measurements to construct an explicit model of the
network bottleneck and the rest of the path. This model predicts
when the bottleneck is about to become idle (i.e. have available
capacity); it aims to transmit new data just-in-time to keep bottle-
neck utilization high without causing excessive queue occupancy.
This approach can eventually optimize both bandwidth and buffer
utilization across the entire Internet performance spectrum.

The algorithms, code and testing experience have been widely
published[12, 13, 22] and are not described in detail here. The BBR
algorithms are based on four broad principles:

• With a few exceptions, transmissions are paced: scheduled
by some mechanism such as tcp_fq[23] or a Carousel tim-
ing wheel[24]. Pacing eliminates the need for the network
to preserve a self clock and reduces variance in the data
rates at all network bottlenecks, which in turn reduces the
transient queues everywhere, making more efficient use of
precious network buffer memory. Carousel also improves
the efficiency of resident kernel buffer memory, because it
enables TCP to deliver data to the network layer just-in-time.
Pacing also improves transactional flows (short on/off flows)
because after a pause TCP can be restarted at its prior rate.
Without pacing, every transaction must either slowstart or
restart at line rate.

• BBR builds an explicit model of the network and bottleneck.
The primary parameters are maximum delivered data rate
(max_BW ) of the forward path and minimum Round Trip
Time (min_RTT ) of the entire path. There are also parameters
that characterize ACK aggregation and jitter, ECN markings,
etc.

• The BBR framework emphasizes model parameters that have
concrete definitions and are calculated from direct measure-
ments of the packet stream. They can also be approximated
by passive observations of sent and received packets. Con-
trast this to cwnd and ssthresh which are heuristics that do
not reflect well defined network properties and can only be
indirectly inferred from observing packets.

• The key innovation behind BBR is using different experi-
ments to measuremin_RTT andmax_BW at disjoint times.
BBR introduces new assumptions that the network usually
has relatively stable properties and that non-overlapping
measurements can accurately estimate the optimal operat-
ing point.

The core algorithm in BBR is to dither the paced sending rate
above and below themaximumobserved received data rate,max_BW .
Themaximum receive rate is probed by sending at 125% ofmax_BW .
If the network is already full and flows have reached their fair share,
the observedmax_BW won’t change.min_RTT is observed every
time the network is underfilled, either due to application pauses
(transactions) or by deliberately reducing the sending rate for one
round trip every 10 seconds. These measurement experiments are
managed by a collection of heuristics that are really what deter-
mine BBRs personality and how it interacts with other flows. BBR
provides a modular and extensible framework for heuristics, with
all parameters specified in standard units. Although we believe that

ACM SIGCOMM Computer Communication Review Volume 49 Issue 5, October 2019

64



BBR’s core algorithms form a solid framework, the suite of measure-
ment heuristics is still evolving, and presents many opportunities
for future work.

Google is already using BBR for both internal and external traf-
fic, and can confirm that BBR performs better (higher data rate
and/or lower queue occupancy) than CUBIC for web, video, and
RPC traffic[25]. WhatsApp is also using BBR with measurable im-
provements to performance. The lower queue occupancy indicates
that it is not generally taking capacity away from other transport
protocols and effectively increases the Internet’s capacity, because
network buffers now have more headroom to accept incast flows
and bursts from legacy stacks3. BBR substantially raises the net-
work efficiency and supports good performance at higher network
loads than self-clocked transport protocols. This effect is easy to
demonstrate[26] and has potential to reduce network costs for all
large content providers. As a consequence many content providers
are testing or have already deployed BBR.

BBRv2 patches are published under dual GPLv2/BSD license[27].
An earlier version is present in the Linux 4.19 LTS train4 People
interested in serious experimentation or bug reporting must follow
the conversation on the public e-mail list[28] and use the most
recent BBR patches. BBR over UDP is part of QUIC in chromium
(BSD license)[29], and saves the effort of configuring and building
kernels. For FAQs and the most up-to-date information about re-
leases see the documentation site[22]. Netflix is working on porting
BBR to FreeBSD. BBR is very much a work in progress and the team
is actively seeking contributions from the community.

4 OPENING A NEW ERA...
These are new research questions, following from BBR.

There is still a lot of work to do before BBR is completely “fin-
ished.” Although Google has good data on BBR performance in its
own serving environment, this data may not be representative of
the Internet at large. In particular, paths from Google and other
large content providers all have similar structures: the serving end
of the path is typically subject to load balancing and admission con-
trol, and is only rarely congested. The bottleneck is nearly always
near the user and has large buffers. The path in between, through
the ISP, is likely to be short. In this environment, BBR quickly dis-
covers the available capacity at the user’s bottleneck and can keep
it full without creating large queues. Google tests paths fitting into
this pattern at scale, so it is no surprise that the results for the latest
BBR are consistently better than with CUBIC (faster and/or lower
queue occupancy)[30].

However this does not prove that BBR is safe and stable in all
parts of the Internet. Although available in Linux today, it is still
very much a work in progress, and off by default. Content providers
and researchers who have sufficient knowledge and interest can
turn it on and monitor its impact on their own services and net-
works. As more site engineers and researchers try it out, the com-
munity will gain confidence that there are no lurking surprises.

3As long as ECN marking rate and the loss rate stay reasonable and there is headroom
in the buffers, BBR can’t cause too much backpressure on legacy protocols.
4The LTS version does not perform well over WiFi and other environments that
aggregate or thin ACKs, but it can be turned on in Debian and many other Linux
distros: sudo sysctl -w net.ipv4.tcp_congestion_control=bbr ;. All of the versions
in the mainline kernel are known to give anomalous results in some environments.

The academic user community has empirically demonstrated
that BBRv1 starves CUBIC under some conditions[31, 32]. BBRv2
improves coexistence with CUBIC by spacing out the BW probe
experiments to loosely match CUBIC’s declining control frequency
at high data rates and long RTTs. Note that there is a tradeoff here:
making BBR more CUBIC compatible also means that it is subject
to some part of CUBIC’s scale limitations. Making BBR probe less
frequently reduces BBR’s ability to quickly fill freed capacity on
high speed paths. There is a tussle between BBR’s rate agility and
extent to which BBR avoids starving CUBIC. There are several
additional tussles including: the excess queue needed to probe for
bandwidth; and the maximum steady-state packet loss that BBR
can tolerate or cause.

Note that balancing tussles requires heuristic design compro-
mises that make BBR less optimal under myopic views of its perfor-
mance. In the case of CUBIC compatibility, one extreme position
might be “crush CUBIC and move on”; while strict backwards com-
patibility might require that “BBR not harm CUBIC under any
circumstance”. Neither of these positions is healthy for the Internet.
A better approach is to strike a balance between these extremes
that can decay over time to follow CUBIC’s declining share of
high-speed traffic.

Since balancing tussles has the potential to cause winners and
losers in other parts of the Internet, the compromises should be
informed by public conversations in Internet standards and research
communities. These conversations take place on the BBR public e-
mail list[28] and in the Internet Congestion Control Research Group
(ICCRG) of the Internet Research Task Force (IRTF). Standardization
is still a ways off.

There are also open opportunities to add more heuristics to
BBR to support additional congestion signals. For example in net-
works where ACKs authentically reflect packet delivery times, delay
gradient[33, 34] and chirping[35] are known to be able to provide
early and more accurate estimates of the path capacity. We believe
that many window based congestion control algorithms could be
recast into BBR’s rate-based framework. Other examples include
DCTCP[36],5 and Remy[37]. Furthermore, to the extent that these
algorithms can be adapted to BBR, BBR has the potential to match
or outperform any congestion control algorithm that has ever been
built on Jacobson88, limited only by the design compromises needed
to balance tussles.

It is our belief that convincing the community that BBR is safe
enough to unconditionally deploy in all environments (i.e. is a
candidate default congestion control) requires either adding algo-
rithms to use all significant congestion signals or demonstrating
why these signals are fully redundant and never provide additional
information.

5 ... AND CLOSING AN OLD ERA
These are old research questions that we thought we understood, but
maybe not. In general we picked on the oldest paper in each area.
Subsequent derived work likely suffers a similar fate.

5BBRv2 includes a reimplementation of DCTCP. The ECN community is currently
engaged in an active tussle over ECN semantics and algorithms. BBR is likely to evolve
to match the emerging consensus.

ACM SIGCOMM Computer Communication Review Volume 49 Issue 5, October 2019

65



BBR is a radical change from all past congestion control algo-
rithms. It is so different that it is difficult to tell what parts of the
existing knowledge base may apply to BBR.

Needless to say, the old TCP Models[1, 4] do not apply to BBR at
all, because BBR is not AIMD. Furthermore, all papers or standards
built on these models are also suspect. The results may still be
correct, but at the very least, the underlying assumptions in the
research need to be revisited.

The traditional TCP self clock clashes with channel arbitration
algorithms present in nearly all mobile and shared media, such as
WiFi, LTE, and DOCSIS. This phenomenon was first observed in
the Ethernet capture effect[40] and has heavily influenced many
channel arbitration designs since then. The essence of the problem
is that data on the forward path blocks the ACKs on the return
path which are needed to preserve the self clock. The natural conse-
quence is that you observe alternating bursts of data and ACKs. In
many (poor) designs you see one burst of data per round trip time
and the bottleneck is idle while the data and ACKs traverse the rest
of the path. In better designs the channel reverses direction more
frequently and the shared bottleneck is kept busy by overlapping it
with data and ACKs traversing the rest of the path.

BBR changes the details: it keeps sending data for a while, even
without ACKs, which might make the problem better (data keeps
flowing) or worse, if more newly arriving data keeps the channel
stuck in the forward direction for longer. In principle all channel
arbitration designs and their measurement studies might need to
be revisited with BBR. However, many of these problems were
observed in serving content to Google’s users, and were in fact used
to tune BBR’s design. In particular, the BW probe phase deliberately
creates a temporary queue that sufficiently resembles CUBIC’s
behavior in order to trigger scheduling heuristics present in some
channel arbitration algorithms. These heuristics use queue backlogs
to trigger high bandwidth modes.

It would be better if the LTE scheduling algorithms could be
co-engineered with BBR, because as it stands today BBR induces
temporary queues that potentially jitter all other flows for all Inter-
net users everywhere it is deployed. Although temporary queues
are necessary to probemax_BW , their dimensions (duration and/or
queue depth) might be reduced if LTE used some other signal to
detect bulk flows.

Another area open for new research is to consider how BBR
might affect future network design at the highest levels. For ex-
ample, the widespread use of CDNs (Content Delivery Networks)
has divided up paths at the transport layer resulting in shorter
round trip times. There has been a symbiotic relationship between
CDNs and the TCP described by the Macroscopic Model because
it predicts that shorter RTTs improve performance. BBR may no
longer have this limitation and could shift designs at the highest
level to emphasize capacity more and packet loss and RTT less
when building networks.

All observations about packet trains and bursts in the Internet
need to be revisited[41]. It was an explicit goal of the pacing to
better interleave traffic (to avoid back-to-back data packets). From
queue occupancy statistics mixed traffic from multiple BBR sources
appears to be non-stationary Gaussian (no self correlation at the
time scales smaller than queue drain times) and thus simple queue
occupancy models apply.

Self clocking in TCP leads to interdependence between packet
timings on a timescale of round trips rather than individual packet
transmissions. This amplifies minute effects into larger scale effects
and evidence of this can be seen in a variety of studies done in
the 1990s[42–45]. In a world where much traffic becomes paced
instead of self-clocked, at least one source of inherent burstiness will
fundamentally change. This suggests a need for new traffic studies
to understand what has changed, and what remains the same. A
companion editorial in this issue[46], by Mark Crovella, examines
the mindset needed to conduct good research into Internet traffic.

Measurenet Lab is rolling out a new platform[38] that will sup-
port an improved version of NDT over BBR[39]. Early results sug-
gest Internet performance measurements that are more stable and
better calibrated than other measurement tools.

For everybody who has worked on congestion control, reflect on
how deprecating Jacobson88 might affect your results. And don’t
forget all textbooks and coursework as well.

6 CONCLUSION
BBR is a break from the past, unconstrained by many of the assump-
tions and principles in Jacobson88. It already out performs CUBIC
over a large portion of the Internet, generally without creating
queues of the sort needed by earlier congestion control algorithms.
We see the transition from window based to rate-based congestion
control to be inevitable, due to its potential to more efficiently use
precious network buffers and the intrinsic deployment incentives
for anybody serving content at large scales. We believe that BBR’s
core algorithms form a sound framework for an evolving suite of
heuristic measurement strategies that will eventually recoup most
that we have learned from Jacobson88. As BBR matures, it offers
the potential to scale better and use substantially less queue buffer
space than prior algorithms.

We were fortunate to be able to contribute to the understanding
of TCP dynamics at a time when the Internet was just beginning
the transition from an academic and research tool to becoming in
many ways the lifeblood of modern society. As a community, our
congestion control knowledge base, mental models and intuition
have been built on the principles espoused in Jacobson88 more
than three decades ago. In reflecting back for this 50th anniversary
of SIGCOMM, we see that the era of TCP dynamics built upon
self-clocked, window-based congestion control is coming to a close.

Looking ahead, who can say what the next 30 years might bring?
It isn’t unreasonable to think that the Internet could be approach-
ing 1 trillion connected devices. At the outskirts, commercial space
flight may mean a much vaster Internet than we have today. Closer
to home, IoT will bring more and more connected devices into our
homes and personal spaces, requiring careful attention to privacy
and security. Some applications such as transportation and medi-
cal devices hold lives in their hands. In recent years we’ve seen a
significant public awakening to many of the risks associated with
an ever more connected world. Transport layer encryption, largely
via TLS/SSL, is becoming the norm. Some applications are raising
the standard to end-to-end application security by design (includ-
ing techniques such as “encryption at rest"[48] and “end-to-end
encryption”[49, 50] which are designed to protect security even if
the“service they are using performs unsatisfactorily”[51].

ACM SIGCOMM Computer Communication Review Volume 49 Issue 5, October 2019

66



Jacobson88 was a direct response to congestion collapse in the
early Internet. Today, an equivalent event at scale would be enor-
mously disruptive. 30 years from now, it could be disastrous. Safety
and security have become increasingly important in all aspects of
networking, and need to be a bedrock principle in research going
forward.

The coming era will require re-examination of much of what we
have learned about Internet traffic dynamics. Some observations
will stand, particularly ideas anchored in the underlying statistics
and mathematics of packet switched networks. Others need to be
swept away with Jacobson88.

In any case, we will have three decades of past knowledge to
revisit, review and relearn.

ACKNOWLEDGMENTS
We’d like to thank Jeff Semke and Teunis Ott for their invaluable
contributions to the development of the TCP Macroscopic Model.

We’d also like to thank all of the BBR authors and testers: Neal
Cardwell, Yuchung Cheng, Van Jacobson and a cast of many who
developed and tested BBR.

Thank you to the internal reviewers, David Wetherall, and Neal
Cardwell for their insightful comments, and to thankHuapeng Zhou
and Jiafei Wen for their insights on BBR usage within Facebook
and WhatsApp.

Special thanks to Eric Dumazet for his work on TCP_fq[23]
and to Ahmed Saeed and Nandita Dukkipati for their work on
Carousel[24], which are required infrastructure for deploying BBR
on an industrial scale server. Through their effort, Linux now sup-
ports lockless pacing that scales to millions of flows.

REFERENCES
[1] MatthewMathis, Jeffrey Semke, JamshidMahdavi, and Teunis Ott. 1997. Themacro-

scopic behavior of the TCP congestion avoidance algorithm. SIGCOMM Comput.
Commun. Rev. 27, 3 (July 1997), 67-82. DOI: https://doi.org/10.1145/263932.264023

[2] Van Jacobson and Mike Karels. 1988. Congestion Avoidance and
Control. Proc. of ACM SIGCOMM ’88, Vol 18 No. 4, 314-329. DOI:
https://doi.org/10.1145/52324.52356

[3] Raj Jain, K.K. Ramakrishnan, and Dah-Ming Chiu. 1987. Congestion avoidance
in computer networks with a connectionless network layer. Digital Equipment
Corporation Technical Report DEC-TR-506.

[4] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose. 1998. Modeling
TCP Throughput: A Simple Model and Its Empirical Validation. Proc. of ACM
SIGCOMM ’98, 303-314. DOI: https://doi.org/10.1145/285237.285291

[5] E. Blanton and M. Allman. 2009. TCP congestion control. RFC5681. RFC Editor.
DOI: https://doi.org/10.17487/RFC5681

[6] Kun Tan, Jingmin Song, Qian Zhang, and Murari Sridharan. 2005. A Compound
TCP Approach for High-speed and Long Distance Networks. Microsoft Research
Technical Report MSR-TR-2005-86.

[7] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: a new TCP-friendly
high-speed TCP variant. SIGOPS Oper. Syst. Rev. 42, 5 (July 2008), 64-74. DOI:
http://doi.org/10.1145/1400097.1400105

[8] Arie Van Praag. 1994. Introduction to the Hippi Specifications. Retrieved from
http://hsi.web.cern.ch/HSI/hippi/spec/introduc.htm

[9] D. Katz. 1989. A Proposed Standard for the Transmission of IP Datagrams over
FDDI Networks. RFC1103. RFC Editor. DOI: https://doi.org/10.17487/RFC1103

[10] J. Jamison, R. Nicklas, G. Miller, K. Thompson, R. Wilder, L. Cunningham, C. Song.
1998. "vBNS: not your father’s Internet" IEEE Spectrum, 35, 7 (July 1998), 38-46.
DOI: https://doi.org/10.1109/6.694354

[11] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow. 1996. TCP Selective Acknowledg-
ment Options. RFC2018. RFC Editor. DOI: https://doi.org/10.17487/RFC2018

[12] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and
Van Jacobson. 2016. BBR: Congestion-Based Congestion Control. Queue 14, 5,
Pages 50 (October 2016). DOI: https://doi.org/10.1145/3012426.3022184

[13] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and
Van Jacobson. 2017. BBR: Congestion-Based Congestion Control. Commun. ACM
60, 2 (January 2017), 58-66. DOI: https://doi.org/10.1145/3009824

[14] T. P. Morgan. 2016. BROADCOM STRIKES 100G ETH-
ERNET HARDER WITH TOMAHAWK-II. Retrieved from
https://www.nextplatform.com/2016/10/31/broadcom-strikes-100g-ethernet-
harder-tomahawk-ii/

[15] Curtis Villamizar and Cheng Song. 1994. High Performance TCP in
ANSNet. SIGCOMM Comput. Commun. Rev. 24, 5 (October 1994), 45-60. DOI:
https://doi.org/10.1145/205511.205520

[16] Guido Appenzeller, Isaac Keslassy, and Nick McKeown. 2004. Sizing router
buffers. SIGCOMM Comput. Commun. Rev. 34, 4 (August 2004), 281-292. DOI:
https://doi.org/10.1145/1030194.1015499

[17] A. Vishwanath, V. Sivaraman, and M. Thottan. 2009 Perspectives on Router Buffer
Sizing: Recent Results and Open Problems. SIGCOMM Comput. Commun. Rev. 39,
2 (March 2009), 34-39. DOI: https://doi.acm.org/10.1145/1517480.1517487

[18] N. McKeown and C. Diot. 2019. Workshop on Buffer Sizing (Dec. 2-3, 2019).
Announcement retrieved from https://buffer-workshop.stanford.edu/, 2019.

[19] Guido Appenzeller, Isaac Keslassy, and NickMcKeown. 2019. Sizing router buffers
(Redux). SIGCOMM Comput. Commun. Rev. 49, 5 (October 2019).

[20] Jim Gettys and Kathleen Nichols. 2012. Bufferbloat: dark buffers
in the internet. Commun. ACM 55, 1 (January 2012), 57-65. DOI:
https://doi.org/10.1145/2063176.2063196

[21] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson. 1994. TCP Vegas:
new techniques for congestion detection and avoidance. Proc. of ACM SIGCOMM
’94, 24-35. DOI: https://doi.org/10.1145/190314.190317

[22] google/bbr. 2019. GitHub repository, retrieved https://github.com/google/bbr
[23] Eric Dumazet, Yuchung Cheng. 2013. TSO, fair queuing, pac-

ing: three’s a charm. Presentation to IETF/TCPM. Retrieved from
https://www.ietf.org/proceedings/88/slides/slides-88-tcpm-9.pdf

[24] A. Saeed, N. Dukkipati, V. Valancius, V. Lam, C. Contavalli and A. Vahdat. 2017,
Carousel: Scalable traffic shaping at end hosts. Proc. of ACM SIGCOMM ’17,
404-417. DOI: https://doi.org/10.1145/3098822.3098852

[25] Neal Cardwell, et. al. 2019. BBR v2: A Model-based Congestion Con-
trol. ICCRG Working Group, IETF 104, Prague (Mar 2019). Retrieved from
https://datatracker.ietf.org/meeting/104/materials/slides-104-iccrg-an-update-
on-bbr-00

[26] N. Cardwell and S. Yeganeh. 2019. TCP BBR Quick-Start: Building
and Running TCP BBR on Google Compute Engine. Retrieved from
https://github.com/google/bbr/blob/master/Documentation/bbr-quick-start.md

[27] N. Cardwell. 2019. TCP BBR v2 Alpha/Preview Release. Retrieved from
https://github.com/google/bbr/blob/v2alpha/README.md

[28] BBR Development. 2019. Google Group. Retrieved from
https://groups.google.com/forum/#!forum/bbr-dev Email address: bbr-
dev@googlegroups.com

[29] QUIC/BBR sources for chromium. 2019. Chromium source code repository. Re-
trieved from https://cs.chromium.org/chromium/src/net/third_party/quiche/src/
quic/core/congestion_control/

[30] Neal Cardwell, et. al. 2019. BBR v2: A Model-based Congestion Control, IETF
105 Update. ICCRG Working Group, IETF 105, Montreal (July 2019). Retrieved
from https://datatracker.ietf.org/meeting/105/materials/slides-105-iccrg-bbr-v2-
a-model-based-congestion-control-00

[31] H. Haile, P. Hurtig, K. Grinnemo, A. Brunstrom, E. Atxutegi, F. Liberal, and
A. Arvidsson. 2018. Impact of TCP BBR on CUBIC Traffic: A Mixed Workload
Evaluation. Proc. of 2018 30th International Teletraffic Congress (ITC 30). DOI:
https://doi.org/10.1109/ITC30.2018.00040

[32] Mario Hock, Roland Bless, and Martina Zitterbart. 2017. Experimental Evaluation
of BBR Congestion Control Proc. of IEEE 25th Int’l. Conf. Network Protocols, vol.
17, pp. 1-10. DOI: https://doi.org/10.1109/ICNP.2017.8117540

[33] David A. Hayes, Grenville Armitage. 2011. Revisiting TCP congestion control
using delay gradients. Proc. of the 10th international IFIP TC 6 conference on
Networking - Volume Part II (NETWORKING’11), Vol. Part II., 328-341.

[34] Radhika Mittal, et. al., 2015. TIMELY: RTT-based Congestion Control for the
Datacenter. SIGCOMM Comput. Commun. Rev. 45, 4 (August 2015), 537-550. DOI:
https://doi.org/10.1145/2829988.2787510

[35] M. Kuhlewind, B. Briscoe. 2010. Chirping for Congestion Control-Implementation
Feasibility. Proc. of Int’l Wkshp on Protocols for Future, Large-scale & Diverse
Network Transports (PFLDNeT’10).

[36] Mohammad Alizadeh, et al. 2010. Data Center TCP (DCTCP). Proc. of ACM
SIGCOMM ’10, 63-74. DOI: https://doi.org/10.1145/1851275.1851192

[37] Keith Winstein and Hari Balakrishnan. 2013. TCP ex Machina: Computer-
Generated Congestion Control Proc. of ACM SIGCOMM ’13, 123-134. DOI:
https://doi.org/10.1145/2486001.2486020

[38] Chris Ritzo. 2018. Modernizing the M-Lab Platform. Retrieved from
https://www.measurementlab.net/blog/modernizing-mlab/

[39] Measurement Lab. 2019. NDT (Network Diagnostic Tool). Retrieved from
https://www.measurementlab.net/tests/ndt/

[40] K. K. Ramakrishnan and H. Yang. 1994. The Ethernet capture effect: analy-
sis and solution. Proc. of 19th Conference on Local Computer Networks. DOI:
https://doi.org/10.1109/LCN.1994.386597

ACM SIGCOMM Computer Communication Review Volume 49 Issue 5, October 2019

67



[41] Hao Jiang and Constantinos Dovrolis. 2005. Why is the internet traffic
bursty in short time scales?. Proc. of ACM SIGMETRICS ’05, 241-252. DOI:
https://doi.org/10.1145/1064212.1064240

[42] S. Floyd and V. Jacobson. 1992. On Traffic Phase Effects in Packet-Switched
Gateways. Internetworking: Research and Experience Vol. 3, No. 3 (September
1992), p.115-156.

[43] Lixia Zhang, Scott Shenker, and Daivd D. Clark. 1991. Observations on the dy-
namics of a congestion control algorithm: the effects of two-way traffic. Proc. of
ACM SIGCOMM ’91, 133-147. DOI: https://doi.org/10.1145/115992.116006

[44] W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson. 1997. Self-
similarity through high-variability: Statistical analysis of Ethernet LAN traffic
at the source level. IEEE/ACM Trans. Netw. 5, 1 (February 1997), 71-86. DOI:
https://doi.org/10.1109/90.554723

[45] Will E. Leland, Murad S. Taqqu, Walter Willinger, and Daniel V. Wilson. 1994 On
the self-similar nature of Ethernet traffic (extended version). IEEE/ACM Trans.
Netw. 2, 1 (February 1994), 1-15. DOI: https://doi.org/10.1109/90.282603

[46] Mark Crovella. 2019. The Skillful Interrogation of the Internet SIGCOMMComput.
Commun. Rev. 49, 5 (October 2019).

[47] Hao Jiang and Constantinos Dovrolis. 2005. Why is the Internet Traffic
Bursty in Short Time Scales?. Proc. of ACM SIGMETRICS ’05, 241-252. DOI:
https://doi.org/10.1145/1064212.1064240

[48] Apple, Inc. 2018. iOS Security. Retrieved from https://www.apple.com/ca/ busi-
ness/resources/docs/iOS_Security_Guide.pdf

[49] K. Cohn-Gordon, C. Cremers, B. Dowling, L. Garratt, D. Stebila. 2017 A
Formal Security Analysis of the Signal Messaging Protocol Retrieved from
https://eprint.iacr.org/2016/1013.pdf

[50] WhatsApp, Inc. 2017. WhatsApp Encryption Overview. Retrieved from
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

[51] E. Omara, B. Beurdouche, E. Rescorla, S. Inguva, A. Kwon, A. Duric.
2019 The Messaging Layer Security (MLS) Architecture. Retrieved from
https://www.ietf.org/id/draft-ietf-mls-architecture-02.txt

ACM SIGCOMM Computer Communication Review Volume 49 Issue 5, October 2019

68


	Abstract
	1 Introduction
	2 Clocking in TCP
	3 BBR
	4 Opening a New Era...
	5 ... And Closing An Old Era
	6 Conclusion
	Acknowledgments
	References

