
Retrospective on “Fragmentation Considered Harmful”
Jeffrey C. Mogul
jeffmogul@acm.org

Christopher A Kantarjiev
cak@acm.org

This article is an editorial note submitted to CCR. It has NOT been peer reviewed.
The authors take full responsibility for this article’s technical content. Comments can be posted through CCR Online.

ABSTRACT
We look back at our 1987 paper, “Fragmentation Considered Harm-
ful,” to explain why we wrote it, how the prevalence of fragmen-
tation was reduced by approaches such as Path MTU Discovery,
and how fragmentation-related issues still lurk in today’s Internet.
Our paper listed several reasons why we thought fragmentation
was harmful; some were more true in 1987 than they are today,
and after our paper was published, the community realized that
fragmentation (and the mechanisms used to mitigate it) exposed
harms we did not anticipate in our paper.

1 FRAGMENTATION IN IPV4
By 1987, the introduction of Internet protocols (IP and TCP or UDP)
had given us the ability to send packets over an end-to-end path that
traversed multiple individual networks, often based on different
WAN or LAN technologies. Because each of these technologies had
been designed for somewhat different environments, they tended
to support different Maximum Transmission Units (MTUs), defined
as the maximum number of bytes carried by a layer-2 (L2) packet.
For example, Ethernet originally supported an MTU of 1500 bytes;
the ARPANet’s MTU was 1006 bytes. (RFC1191 [2] includes a table
of about 15 different MTUs in use in 1990.)

Generally, a host sending a packet does not know the precise
end-to-end path that the packet will take over an IP network, and in
particular does not knowwhat L2 technology is in use except for the
first (directly-connected) link. Therefore, it could send an IP packet
that is short enough for the first hop, but too long for one or more of
the subsequent hops. This created a challenge that the designers of
the original Internet Protocol (IPv4) solved by allowing intermediate
routers (often, at that time, called “gateways”) to fragment an IP
datagram – to break it into several smaller packets, each with its
own IP headers. The ultimate receiver can then reassemble the
fragments to recover the original datagram – assuming that the
sender assigned a unique 16-bit “IP ID” value in the original packet
headers, and assuming that no fragments are lost along the way.

Note that TCP inherently tries to avoid fragmentation, by nego-
tiating a Maximum Segment Size (MSS) that typically is the min of
the MTUs at the sender and receiver (minus IP/TCP headers). But
if an intermediate link has a smaller MTU, that MSS would be too
large to traverse the network without fragmentation.

Whenwewrote “Fragmentation ConsideredHarmful” [5] in 1987,
fragmentation worked well – much of the time. But sometimes it
failed, and after debugging some of these failures, we realized that
IP’s end-to-end fragmentationmight not have been the best solution

Jeff Mogul is currently affiliated with Google LLC. This article represents his own
opinion and does not represent the views of Google.

to the challenge of mismatched MTUs. Instead, we argued that
senders should attempt to send their original packets at the largest
size that could reliably be carried end-to-end without fragmentation
– later work [2] called this the “path MTU,” although our 1987 paper
did not use that term.

2 CHALLENGES IN 1987
In that paper, we identified several specific problems (and a few
others not worth mentioning):

• CPU and memory costs at receivers for reassembly:
While creating fragments at an intermediate router is typi-
cally deterministic, a receiver cannot rely on all fragments
arriving in order, and so reassembly adds CPU overhead to
inspect the fragments and arrange them in order, including
a data structure that supports lookups based on the IP IDs
of incoming fragments. Also, if some fragments are lost en
route, buffers could be tied up for many seconds, until the
receiver times out and discards the partially-reassembled
packet. (Remember that Van Jacobson’s classic paper “Con-
gestion avoidance and control” [4] would not be published
until the next year, and so congestive packet loss was a
frequent problem.) This added memory pressure; typical sys-
tems only had a few MB of DRAM, and not much could be
spared for network buffers.

• IP ID wrap-around: Successful reassembly depends on
matching the 16-bit IP ID field for all of the fragments in an
IP packet. The ID must be unique for all packets “in flight”
between two hosts, or else fragments from two different pack-
ets could be accidentally spliced. We assumed a maximum
Time to Live (TTL) of 32 seconds, so a path with fragmenta-
tion could support at most 216/32 = 2048 packets/sec. We
predicted that this rate would become feasible within 5 years,
at which point fragmentation would create an artificial rate
limit; we are not sure that prediction came true on schedule.

• Deterministic fragment loss: The biggest problem, and
the one that prompted us to look into fragmentation in the
first place, was that various circumstances could cause de-
terministic loss of the N th fragment of a packet, so even if
the sender timed out and retransmitted, the same fragment
would get lost the next time. Remember that if any fragments
are lost, the receiver cannot reassemble the original packet –
the packet is lost, and the receiver’s IP layer has no way to
report that loss back to the sender. Even if the deterministic
loss is probabilistic rather than certain (the N th fragment
is lost with probability < 1 but larger than the average loss
rate), we showed that goodput could be painfully low.

ACM SIGCOMM Computer Communication Review Volume 49 Issue 5, October 2019

41



What circumstances caused deterministic packet loss? First, many
NICs of the day could not buffer more than a few packets, and
if fragments arrived faster than the host could service them, the
NIC would have to drop packets. (Operating systems of that era
almost always took one interrupt per packet.) Second, given the
small amount of host buffering available, the fragments of a large
(many-fragment) packet could consistently arrive in a way that
overran the available space, requiring the IP layer to drop at least
some fragments before the packet could ever be re-assembled – and
the remaining fragments took a while to time out, tying up space
for no good purpose and exacerbating the deterministic loss.

We argued that sending packets no larger than the path MTU,
and relying on TCP’s loss-recovery mechanisms, would provide
much better results. However, while we suggested several methods
to learn the path MTU, in the paper we reported no experimental
results for any of those methods, although clearly we had had some
operational success by artificially limiting our TCP senders to a 576-
byte MTU. Subsequently, the IETF MTU Discovery Working Group
standardized (RFC1191 [2]) an MTU-learning method suggested by
Geof Cooper, which we mentioned in our paper while advocating
other, more complex schemes.

3 HOW THINGS HAVE CHANGED
Today, the specific challenges that we worried most about in 1987
(especially deterministic fragment loss and lack of reassembly
buffer space) are mostly non-issues, due to much larger memories,
to better-engineered network equipment that can usually handle
minimal-size packets at line rate, and probably most of all, to the use
of Path MTUDiscovery (PMTUD) to avoid most IPv4 fragmentation
– and IPv6’s non-support of end-to-end fragmentation.

But we still have some challenges related to MTUs, including:

• PMTUD failure: Senders using PMTUD transmit all of their
packets with the “Don’t Fragment” (DF) bit set in the IPv4
header. When such a packet reaches a router that would
have to fragment it, instead we expect the router to reply
with an ICMP message of type “Destination unreachable”
with a code of “fragmentation needed and DF set” – aka the
“Datagram too big” message – allowing the sender to detect
the failure and, via a heuristic, reduce the packet size and
try again. Unfortunately, some router-like systems (includ-
ing one sold by our own employer at the time) would drop
the packet without sending the datagram-too-big message.
In other cases, a firewall near the sender would drop the
datagram-too-big message, since ICMP messages were often
DoS-attack vectors.
By 2010, Luckie and Stasiewicz [6] reported measurements
showing that the PMTUD failure rate was “between 5% and
18%, depending on the MTU of the constraining link,” and
that many of the remaining failures could be avoided by
fixing a few implementation bugs.

• DoS attacks: While many senders use PMTUD to ensure
successful communication, the Internet does not require the
DF header bit to be set for IPv4 packets. Therefore, a mali-
cious sender can send a series of fragmented packets which
omit one of the fragments from each packet. The receiving
victim cannot reassemble any of these incomplete packets,

so its reassembly buffers are tied up with bogus packets un-
til these time out. Also, some systems pre-allocate memory
based on the total datagram size indicated in the first frag-
ment, so an attacker can send a stream of “first fragments”
with unique IP IDs and maximal total-length fields, tying
up lots of memory. Of course, a receiver can always limit its
own reassembly buffer space and its reassembly timeout, but
this can reduce its ability to handle legitimately fragmented
packets.

• Other attacks: Several other attacks exploit IP fragmenta-
tion. For example, an attacker can send several fragments
with the same IP-ID that overlap in the reassembly buffer;
some older versions of Linux and Windows handle this case
incorrectly, and could crash (the “teardrop attack”). Over-
lapping fragments can also sometimes be used to sneak ma-
licious payloads past intrusion-detection systems. Another
attack delivered a longer packet than indicated in the original
total-length field, which could also cause kernel crashes.

• Router overheads: Typically routers cannot perform frag-
mentation in their efficient hardware fast paths, so packets
needing to be fragmented must invoke a slow path, often in
software.

4 SUBSEQUENT RESEARCH
A variety of papers started from where we left off, and proposed
other approaches related to fragmentation.

Chandranmenon and Varghese [1] (1998) suggested that avoid-
ing fragmentation by sending packets that fit the Path MTU was
undesirable, because larger packets are more efficient, and because
a sender using IP multicast would have to use the lowest PMTU in
the entire multicast tree. They proposed a variant of hop-by-hop
reassembly, called “Graceful Intermediate Reassembly” (GIR), to
optimize the use of each link; the use of “Dynamic Segment Sizing”
that reduces the TCP segment size only when TCP detects losses;
and a more efficient reassembly algorithm. They found substan-
tial performance improvements in their experiments, but to our
knowledge, GIR was never deployed widely.

Gilad and Herzberg [3] (2011) reported several novel security at-
tacks exploiting various aspects of the IPv4 and IPv6 fragmentation
mechanisms, including “DoS, interception and modification attacks
by a blind (spoofing-only) attacker” as well as several other attacks
that require some third-party assistance. They wrote “Like many or
most previous attacks on IP, our attacks exploit weaknesses in IP’s
fragmentation mechanisms,” which we had not anticipated in 1987.

5 SUMMARY
When we wrote our 1987 paper, we were not sure whether the
problem of IP fragmentation was significant enough to be accepted
by SIGCOMM, and in hindsight, the lack of any validation of our
proposed solutions would probably cause the paper to be rejected
by the 2019 SIGCOMM TPC. However, we believe that our work –
and a lot of subsequent implementation, validation, and measure-
ment work by many others – did end up making the Internet more
successful. Sometimes one need not write a lot of code or a complex
algorithm to have an impact.

2

42



[1] Girish P. Chandranmenon and George Varghese. 1998. Reconsidering Fragmen-
tation and Reassembly. In Proceedings of the Seventeenth Annual ACM Symposium
on Principles of Distributed Computing (PODC ’98). 21–29.

[2] Dr. Steve E. Deering and Jeffrey Mogul. 1990. Path MTU discovery. RFC 1191.
(Nov. 1990).

[3] Yossi Gilad and Amir Herzberg. 2011. Fragmentation Considered Vulnerable:
Blindly Intercepting and Discarding Fragments. In Proceedings of the 5th USENIX

Conference on Offensive Technologies (WOOT’11). USENIX Association, 2–2.
[4] V. Jacobson. 1988. Congestion Avoidance and Control. In Symposium Proceedings

on Communications Architectures and Protocols (SIGCOMM ’88). 314–329.
[5] C. A. Kent and J. C. Mogul. 1988. Fragmentation Considered Harmful. In Proceed-

ings of the ACM Workshop on Frontiers in Computer Communications Technology
(SIGCOMM ’87). 390–401.

[6] Matthew Luckie and Ben Stasiewicz. 2010. Measuring Path MTU Discovery
Behaviour. In Proceedings of the 10th ACM SIGCOMM Conference on Internet
Measurement (IMC ’10). 102–108.

3

43


	Abstract
	1 Fragmentation in IPv4
	2 Challenges in 1987
	3 How things have changed
	4 Subsequent research
	5 Summary
	

