
Patience
Jon Crowcroft

University of Cambridge
jon.crowcroft@cl.cam.ac.uk

This article is an editorial note submitted to CCR. It has NOT been peer reviewed.
The authors take full responsibility for this article’s technical content. Comments can be posted through CCR Online.

ABSTRACT
In this brief note I reflect on my experiences of 60% of the 50 years
of the ACM SIGCOMM Experience. This represents very personal
views, and I encourage people who were around for any of this
time to disagree.

CCS CONCEPTS
• Social and professional topics→ Historical people; Computing
organizations;

KEYWORDS
SIGCOMM

1 INTRODUCTION
31 years ago (at the time of writing), I attended SIGCOMM 88
at Stanford. We had a couple of papers, but I was paying more
attention to the new things I was hearing about – papers on the
Internet Architecture (Clark), Spanning Trees (Perlman), Multicast
(Deering), congestion control (Jacobson).

2 SIG CHAIR
I acted as ACM SIGCOMM chair from 1995-1999 with Sally Floyd
as co-chair. Three things I’d like to reflect on that were, I think,
important things we decided back then:

Avoid Pangloss We considered, and rejected the idea of be-
coming like SIGGRAPH. At the time, SIGGRAPH ran a bud-
get of 5-10M per year, and had a joint equipment show, film
show and technical conference.We thought about the equiva-
lent, which would have been to combine SIGCOMM, Interop
(a large trade show at the time) and the IETF. This was scary,
and when SIGGRAPH had a slight under-attendance one
year (in Vegas, one of the few places with conference fa-
cilities big enough for their 50,000 attendees) they nearly
bankrupted the ACM. I regard it as very lucky we didn’t go
that way.

Embrace Globalism SIGCOMM had been in mainly in the
USA, with brief excursions to Quebec and Mexico City and,
in 1990, in Zurich. It was time to engage more fully with
folks around the world, especially since the systems under
study (e.g. the Internet) were pretty International, so we
started to locate the conference regularly in places with a
local community, not just within North America. I think this
has been proved justified multiple times over.

Have Values Wehad some notions based on actual value judge-
ments. I make no apologies for this example, but we had

an intuition that distributed congestion control really mat-
tered. We discussed with theory and economics folks and
really though that there was a real and present danger of
the Bad TCP – in some sense, we became a congestion con-
trol thought police. There are other examples of things that
people asked us to avoid, which we did not.

3 SIG AWARD
With great honour, I received the 2009 ACM SIGCOMM Lifetime
Achievement award. (a bit daunting as I’ve done some other stuff
in the decade since then, but that’s another story). Here are some
reflections on things that I feel are important to do, despite them
being awkward and possibly even unpleasant:

Contrarian I believe you should work on things you don’t
like (QoS, ATM) so you can be an honest, informed critic.
You also hone your taste/judgement/skills at making good
calls. I currently put blockchain and quantum computing in
this space.

Boxing Get out of the box as often as possible - if this means
you write lots of papers, but have to cultivate a tolerance for
rejection, learn to turn this into refining your explanation of
your apparently outlandish ideas, instead of getting stressed.
While this may damage your H-Index, it can also be a lot of
fun. One year, I had six Hotnets rejects.

Patience Be aware that many ideas take inordinately long
timescales to have an impact. One area I did some work on
was IPng requirements capture (ended April 1996). Twenty
years and more later, IPv6 sees use in about 15% of the Inter-
net - I’m still waiting for multicast to see a bit more use. I
am not holding my breath. Sometimes, things learned along
the way turn out to be very useful in other contexts; often,
in fact.

4 CONCLUSIONS
There are many stories that can be told - here are a few that never
made it into a SIGCOMM paper.

Why seventeen seconds? Back in the early 1980s, Europe
was connected to the Internet via SATNET, the Atlantic
Packet Satellite Network. The links were driven by a version
of the ARPANET IMP (interface message processor), called a
SIMP (a Satellite IMP). At some point, UCL (where I worked
from 1980-2000) measured occasional ping times to typical
hosts in the US of upwards of 17 seconds. It turned out that
there had been a memory leak in one version of the code,
and the solution someone had implemented was to walk

ACM SIGCOMM Computer Communication Review Volume 49 Issue 5, October 2019

9



through all the area of RAM used for packet buffers, and
stick anything that look like it contained an IP packet back
on the output link drivers “just in case”. This opposite-of-
garbage-collection ran every 17 seconds. The rest is, as they
say, packet history. (Actually, I might be mis-remembering
this - perhaps it was 23 seconds?).
Another SIMP story was that at some later stage, the source
code for the SIMP was lost. The only way to change things
(e.g. to switch on or off a different MAC layer, which could
be a significant change to performance on a shared geosta-
tionary satellite channel with a physical RTT of 0.72 seconds
at the speed of light alone), was to patch the binary (e.g. to
choose FTDMA versus CPODA). This was (as far as I recall) a
relatively rare skill as the CPU in the SIMP was a Honeywell
C30 processor – not something that used a terribly widely
used or familiar instruction set.

Reboot SATNET For a while in the mid-to-late 1980s we used
to be the best place to test new end-to-end algorithms in
the Internet, due to the delay (discussed above) and loss (e.g.
during thunderstorms in Western Europe or Eastern US),
and general heterogeneity of the path. I used to install new
kernels in the Sun workstations used as the measurement
testbed machines then. It was always quite exciting to reboot
a bunch of machines the other side of a network, without any
other way of reaching them (there wasn’t another satellite
path or a fail-over terrestrial link, or even dial-up to these
machines at this point). Luckily (or else because I usually
tested stuff locally before doing remote kernel installs) I
didn’t have the nightmare scenario of it never coming back
to life.
We did have one near miss, where we built a way to update
the TCP congestion control algorithm by compiling the new
function, and writing it (the binary code fragment) to a con-
trol socket to an experimental kernel, which then just did
a function indirect call to this new code (sort of Software
Defined Networking in 1988). The error was to not check
the length of the compiled code when passing it through a
socket, and to assume it would fit in an mbuf and bcopy it
there - at some point, overwriting the next buffer pointer,
and eventually causing a test machine to crash and trash its
filesystem. Oops. Especially since that machine was one of
the researcher’s developer machines and had his codebase
on (luckily, it was backed up:)

9.6 Kbps! Around this time, we rolled out a 2Mbps terrestrial
net around the UK for a research project called Admiral. I
wrote an IP router implementation for it. I put in all sorts
of debugging and tracing capabilities. One time, someone
calledme up from the University of LondonComputer Center
to complain that the speed of the net was down to about
9.6Kbps. I asked them to turn on some debugging so I could
see maybe what the problem was - they said they had every
level on full. I asked them if that meant they had full packet
display on the console of the router, which was connected
via a 9.6kbps sync blocking serial (RS232) line, and magically,
they, and the problem went away.

Multicast goes viral In the early 1990s, there was a workshop
about multicast at Stanford. During the talks, there was an

Figure 1: Breakfast over Vancouver

alert that the net was looping multicast traffic. It turned
out that a new release from a major router vendor had a
very interesting bug which caused the routing system to
self-replicate – not as intended. The extra excitement was
that a new release had to be deployed/installed and enabled
everywhere to fix the problem: a single remaining instance
would just re-propagate the problem. It was touch and go
whether the net would come back again without some rather
tricky global coordination. Luckily nothing like that happens
these days.

Share prices and elections I remember sitting at the back of
another workshop near the end of the 1990s, while many
people in the room were looking at online web pages re-
porting the count in a US Presidential election, whilst other
people in the room were looking at their (router vendor em-
ployer) share price graph against time. I wondered which if
these was really more important than the talks in the room -
perhaps both? Verily the Internet was the new rock-and-roll.

Zeppelin versus Seaplane At SIGCOMM in 1998, in Vancou-
ver, we were off to dinner from the conference hotel and
the house band were playing Stairway to Heaven (no sign
forbidding that). As went to get in a limo, my colleagues
recognised the two gentlemen getting out of the same car to
be, yes, Page and Plant. As they entered the hotel foyer, the
house band jaws dropped, slightly. Even more rock-and-roll
The next morning, we went for a ride in a seaplane over the
city and nearby lakes – so much faster than a Led Zeppelin:
in the photo with the author are Kid Multicast, Dr SIP, Sprint,
Professor Fry, and some surfer dude.. Later, we’d feel less
cool when we heard Vint Cerf had had the MCI Lear jet
scrambled to get him to come to the conference in 1996 to
get the SIGCOMM award that year.

Since 2000, however, everything in communications systems
research has been going downhill: Pressure on authors to gener-
ate reproducible research, to share software and data artefacts, to
present incredible game-based animations of their work at the con-
ference, has led to ossification of the work. Now, instead of grand

ACM SIGCOMM Computer Communication Review Volume 49 Issue 5, October 2019

10



new ideas, everything is just a new version number or a semitone
increase (5G, IPv6, F#). More seriously, in fact, this is a good thing,
as the community has grown up and take collective responsibility,
since the systems we research are often, shortly after, incorporated
into the world’s critical infrastructure.

5 FUTUREWORK
There are still some thing to finish. One example is that I think the
compromise design for IPv6 was a mistake, and we should revisit
IEN #1 (available in the RFC archive site), written back in 1977,
which clearly addressed (literally) multihoming, topology changes
and potential mobility.

The net is now critical infrastructure, but we haven’t really
thought about how to apply some of the Internet Architectural
type thinking to some pieces – for example, we need to have a
cooperative/competitive organisation so that cellular data network
providers can share infrastructure (cell towers, spectrum etc) as this
is technically a win-win in terms of capacity, but would need the
moral equivalent of BGP at scales that already change inter-domain
policy and algorithms.

The pitchforks and torches of the software revolution in net-
works needs to be carried to every corner of communications so
that we can improve security and safety through design and ver-
ification techniques which are being deployed in other parts of
the computing industry, and I’d still like to see multicast (widely)
deployed.

REFERENCES
See the 50 year bibliometric analysis elsewhere in this issue, in
which we try to dispel the notion that there should be a ranking be-
tween conferences and journals in this community, using evidence.

ACM SIGCOMM Computer Communication Review Volume 49 Issue 5, October 2019

11


	Abstract
	1 Introduction
	2 SIG Chair
	3 SIG Award
	4 Conclusions
	5 Future Work
	6 References

