
Retrospective on “Towards an Active Network Architecture”
David Wetherall

Google
wetherallx@google.com

David Tennenhouse
VMWare

tennenhouse@vmware.com

This article is an editorial note submitted to CCR. It has NOT been peer reviewed.
The authors take full responsibility for this article’s technical content. Comments can be posted through CCR Online.

ABSTRACT
Network programmability hasmetamorphosed over the past twenty
years from the controversial research vision of active networks,
through PlanetLab, to the juggernaut of SDN and OpenFlow that
has swept industry. Now PISA switches are emerging with support
for protocol-independent reconfigurability. We reflect on how net-
work architecture has evolved along a different path than we had
foreseen to arrive at a place that is not so different than we and
other researchers had hoped and imagined.

KEYWORDS
Active Networks, OpenFlow, SDN.

1 INTRODUCTION
...packets contain header fields interpreted as “telemetry
instructions” by network devices. These instructions tell
an INT-capable device what state to collect and write
into the packet as it traverses the network. [17]

The quote above would be at home in an active network paper
from the late 1990s describing a research vision. It is drawn instead
from the P4.org In-band Network Telemetry (INT) specification
in 2018, at a time when switch vendors are beginning to support
data plane telemetry. The journey over the intervening twenty
odd years is already described well in articles such as “The Road
to SDN: An Intellectual History of Programmable Networks” by
Feamster, Rexford and Zegura [11]. We provide a brief summary
of this transformation next for the sake of a standalone paper. But
our purpose in this article is to reflect with some humility on how
network architecture has evolved in a different way than we had
foreseen to arrive at a place where active networks remain highly
relevant to the network architecture. We also remind the reader of
other retrospective articles on active networks, such as Calvert’s
”Reflections on Network Architecture” [4].

The thinking on network programmability that began as active
networks has crystallized in network devices that provide flexibil-
ity independent of the particulars of data plane protocols by using
standards such as OpenFlow [13], P4 [7], and OpenConfig [16]. A
capsule summary of network programmability is as follows1. Ac-
tive networks [20] was motivated by the ongoing need to extend
the functionality that is logically performed within the network,
plus the tortuously slow path of doing so via IETF protocol stan-
dards. The lengthy delays and high barriers to extending network
functionality motivated further systems such as PlanetLab [6], and
have continued to be a problem to the present day. The bold vision
1Pun intended. We hope some of you will at least chuckle.

of active networks was to use some form of programmability as
the answer to both problems. Two forms were explored: one in
which packets literally invoked programs hosted by the infrastruc-
ture [21]; and the other in which operators injected programs to
control their infrastructure [1].

Active networks are mostly remembered for the first, more ex-
treme vision, though it is the latter form, championed by Jonathan
Smith, that has proved far more practical, at least to date. The re-
sponse by the network community was much controversy over
embedding potentially complex functions in the network architec-
ture [5], and an intellectual flowering of research. Yet there was no
direct transfer of results to industry, as the lack of a driving use
case stalled progress and adoption.

Subsequent efforts at programmability focused on the separa-
tion of control and data planes. Traditional routers are vertically
integrated, handling tasks from basic forwarding to full-blown
routing protocols. Separation provides twin advantages for opera-
tors. Logically centralizing the control plane functions facilitates
network-wide control over management policies, notably traffic
engineering. And reducing switches to forwarding devices simpli-
fies their operation. OpenFlow emerged by the late 2000s as an
enabling API [13] for this form of programmability. It led to what is
now widely called SDN (Software-Defined Networking), in which
switches are simple forwarding engines that are controlled by more
complex management software.

The next chapter in network programmability is embodied in
the evolution of SDN from OpenFlow to P4 [3] in the mid 2010s.
OpenFlow controls switch behavior based on the pragmatic model
of a classical forwarding table. While more general than IP switches
of the past, it is a familiar model. On the other hand, P4 allows
data plane forwarding to be specified in the form of a high-level
program, which is one of the hallmarks of active networks. The
language is “protocol independent” meaning that new protocols
can be expressed within the framework of P4 regardless of their
relationship to IP. INT is an example of a new protocol.

We have come full circle in our story: switches are becoming
flexible forwarding devices whose functionality can be redefined
by the operator using a high-level programming language. This is
exactly the kind of outcome active networks sought to achieve.

2 REFLECTIONS
We’ve been privileged to witness the realization of network pro-
grammability in the form of SDN over the past decade. However,
other trends such as datacenters and VMs have been the engines of
change for the network landscape; programmability is one tool for
effecting it.

ACM SIGCOMM Computer Communication Review Volume 49 Issue 5, October 2019

86



Datacenter Networking Economics
Active networks targeted the problem of readily introducing new
network functionswith the research community inmind [20]. Open-
Flow was similarly conceived with campus network experimenta-
tion in mind [15]. But the key driver for the adoption of SDN by
industry was (of course) economics, not programmability.

Large and growing costs came with the tremendous scaling of
datacenters, starting in the 2000s and continuing to this day. The
major players like Google, Microsoft, Amazon, and Facebook have
invested many billions of dollars to build ever-larger networks,
which in turn has emphasized ways to save on cost. Traditional
networking equipment used by network operators for their back-
bone networks did not fit the datacenter role well. These devices
are expensive, complex, and limited in scale.

Separating the control and data planes allowed for improvements
in these factors, a story told in Google’s datacenter networking
retrospective [19]. The control plane can be stripped down and
customized by the operator. It’s software. The data plane can be
implemented with many simpler, less expensive devices. That’s
commodity hardware. It has been enabled by rapid advances in
merchant switching silicon in the 2000s: suddenly it was possible
to buy a single ASIC that supported dozens of ports capable of Pb/s
switching [10]. Standards such as OpenFlow, and more recently
SAI (Switch Abstraction Interface) originating from Microsoft, fit
into this picture by letting third-party software control switch
forwarding in a vendor-neutral manner.

This structure works well because it aligns incentives and the
ability to execute, including independent adoption by datacenter
operators. We did not see this coming, but recognize it to be an
excellent vehicle for innovation. Success in the datacenter opened
the door to the WAN, with large providers such as Google and
Azure now having software-defined backbones.We also seewireless
systems such as 5G moving in the same direction.

Network Virtualization
Virtual Machines (VMs) have changed computing. They are also
changing networking because of the natural synergy with network
virtualization, i.e., running multiple distinct networks on a common
substrate. Thus they have been an important use case for network
programmability. A key example is multi-tenant datacenters, in
which each tenant runs a set of VMs. Each tenant must see their
own network, independent of the other tenants. A natural way
to accomplish this isolation is to control the path of tenant traffic
through devices. Since these paths extend to VMs, the programming
of flows extends to hosts. Systems such as Open vSwitch (OVS) [18]
are designed expressly for this purpose.

Encapsulation strategies have long been used in networking to
stitch together logically separate networks that coexist with each
other. They were an original target of active networks, which relied
heavily on overlays. PlanetLab improved virtualization support
with slices [6]. Now, driven by VMs, there is a large and growing
set of protocols that support network virtualization behaviors as the
community works out the best solutions. The protocols range from
classic GRE and VLANs to newer standards for VXLAN, NVGRE
and GENEVE. However, more than a protocol standard, what we
need are methods to manage entire networks in the manner of SDN.

What better use of network programmability in both the control
and data planes than to support this exploration and transition,
with programming languages providing a systematic and rigorous
approach?

The Pragmatism of OpenFlow
Without ASIC support, network programmability is confined to
hosts running at the edge of the network; there have been multiple
attempts at using servers as switches for flexibility [8], but the
resulting performance pales in comparison to silicon. Thus one of
the largest steps forward in network programmability was surely
OpenFlow, combined with the singular force that is Nick McKeown.

Observe that OpenFlow is a deliberately pragmatic choice for
switch support of programmability [13]. The API essentially pro-
vides a way for external programs to manipulate entries in the
switch forwarding table. This functionality was at the core of what
switch chips already did using routing protocols and other controls.
Wrapping this functionality with an API provides a viable path
for device support from switch vendors (especially in the world
of commodity switches and merchant silicon). There was no code
that was injected to switches and no need to change switch sili-
con. Yet simply providing this API enabled new software systems
to manipulate devices to stitch together entire networks for pur-
poses like datacenters and virtualization. This development was
very timely because it came when operators were grappling with
altering routing protocols for purposes such as traffic engineering.
OpenFlow provided the ability to control pathing directly rather
than, for example, by adjusting link weights.

The evolution to richer forms of programmability is a more
recent development. OpenFlow is tied to the formats of commonly-
used protocols, like TCP. The ability to reconfigure the hardware
to support new protocols with different formats required a general-
ization of the traditional switch architecture into a PISA (Protocol
Independent Switch Architecture) switch. This is a relatively recent
development where the value of programmability will be proved
out (or not). Reconfigurable Match Tables (RMT) [2] are one leading
candidate for this generalization for switch chips, along with the
P4 language [3] for programming a PISA switch. The initial mover
in this space is Intel/Barefoot with their Tofino series of merchant
silicon switching chips that implement P4.

Speeding Evolution
Programmability is valuable to speed what is otherwise an unwork-
ably long process of network evolution, but it is not the goal per se.
The driving need is to support future network use cases, of which
there are many possibilities: gathering switch telemetry; redirecting
and load balancing traffic; measuring link usage and congestion
for host transports; support for multicast and content distribution;
sender/receiver rendezvous; detection of incast patterns; and net-
work filtering. Several of these domains require information from
within the network to function properly. This is especially the case
for security functions like DDOS protection. Here, unwanted traffic
aggregates must be detected and filtered in the network by switches,
because the damage is done if the traffic reaches hosts.

So the key question is: what kind of switch programmability is
effective for supporting future use cases? This question has been

ACM SIGCOMM Computer Communication Review Volume 49 Issue 5, October 2019

87



controversial since the days of active networks, though early de-
bates on the relationship with the end-to-end argument [5] now
seem quaint. Several points seem clear to us with the benefit of
hindsight:

• We should prefer to run network functions as close to the
edge of the network as feasible to simplify the core of the
network.

• Some functions nonetheless need to run within the network,
including the core of the network, because they depend on
network state

• Flexible support for functions that can access protocol fields
and run in the network is an enabler of network evolution,
even when the set is small.

The first point fits well with the separation of control and data
planes in SDN: run the more complex control plane on hosts and a
lean data plane on switches. The reason is that modern network
switches have essentially no buffering relative to their speeds. Thus
any operation that requires non-trivial memory or delay or other-
wise adds complexity will be preferentially pushed from the switch
data plane and towards hosts. This includes the implementation of
network-wide policies and all manner of proxies.

The second point notes that there are often corresponding func-
tions that are needed at switches to support host policies and prox-
ies. They are primitives that cannot be provided at hosts because
they require switch state. Examples include QOS, pathing decisions
for load balancing, and telemetry. Low-complexity algorithms exist
for all of these examples.

The final point says that the switch support is crucial even
though it is small in functionality compared with what runs on
hosts. And to be able to evolve it, limited forms of programmability
are highly effective because they admit many combinations of prim-
itives across all manner of packet formats. INT [17] provides an
example of how programmability can add value. With a small set of
“telemetry instructions”, INT lets hosts send traffic that optionally
extracts telemetry from switches that are programmed with P4 (or
otherwise) to be INT-capable. This telemetry can only come from
switches. It already existed there and programmability makes it
accessible. Hosts can extract and use this telemetry in many ways
that are tailored to their needs. For example, a host may want to
trace the path of a TCP connection that is experiencing retransmis-
sions to pinpoint the location of queuing and loss. The host can
simply encode INT packets to do this, collecting switch telemetry
in packets that continue to carry payloads.

While this example may seem minor, it captures the kind of
capability that we fundamentally need and lack today. Because we
cannot get the switch telemetry we need with established proto-
cols, we make do with workaround tools such as traceroute and
pathchar [9]. They are very clever workarounds, to be sure, but
they are approximations rather than a reliable way to solve the
problem. We should do better, and with programmability we can.

The Promise of Programming
Active networks emphasized the use of programming languages
because of the benefits they bring via program analysis as well as
expressiveness. Type-checking and static analysis help with testing
and the verification of high-level invariants, e.g., all packets have

a TTL or equivalent field whose use prevents long-lived packets.
Not only individual switches, but entire networks can be verified
for properties. Ultimately, declarative specifications of network
behavior can be compiled into programs for individual switches.

The use of programming language techniques promises to put
networks on a computer science foundation that complements the
usual engineering considerations. For example, in large networks
some components are failed and being repaired, some are drained
for maintenance, some have been upgraded while others have not,
and some are being turned up or down. The network is always in
transition. Since the combinatorial state space is enormous, it is
easy for traditional designs to experience occasional, unwanted
side-effects in which a less preferred path is taken, a hotspot is
created, or, worse, connectivity is broken. These problems are often
time-consuming to debug. Instead, it is far better if we are able to
prevent them by design using program analysis.

This promise is largely unmet today and remains of substantial
interest to the research community. In the host setting, domain-
specific languages such as eBPF [14] have already proven effective,
and are enjoying broader use as a mechanism to extend network
functionality. We expect to see renewed progress on this front as
reconfigurable, protocol-independent switches reach the market.
As SDN was the driver for OpenFlow and programmability was
the tool, we will need a driver for which program analysis is the
tool if we are to realize significant progress in practice. We do not
know what that driver will be, but do know that the complexity of
operating networks presents a rich target as it remains too high.

3 CONCLUSION
At the time of active networks, the Internet was regarded as ossi-
fied, a victim of its own success that made change at the network
level impossibly slow. Yet within a decade, trends such as SDN and
network virtualization have wrought a sea change in unlocking
innovation. An important legacy of active networks is the body of
students and papers that have come out of it as an intellectual in-
quiry. We would like to think that these students and papers helped
to prepare the ground for the advances in network programmability
and the innovation in network architecture that followed.

And there is much more to come. We are at an exciting time as
reconfigurable, protocol-independent switches begin to enter the
market. Host and NIC functionality is becoming part of the network
that may be manipulated. And at switches primitives such as Seg-
ment Routing [12] are generalizing the forwarding capability. We
do not know what the future holds, but anticipate that constrained
forms of programmability will play a large and growing role.

ACKNOWLEDGMENTS
This note represents the opinions of the authors and does not
represent the views of their respective employers. We thank Jeff
Mogul for feedback.

REFERENCES
[1] D. S. Alexander et al. 1998. The SwitchWare Active Network Architecture. Netwrk.

Mag. of Global Internetwkg. 12, 3 (May 1998), 29–36.
[2] Pat Bosshart et al. 2013. Forwarding Metamorphosis: Fast Programmable Match-

action Processing in Hardware for SDN. SIGCOMM 43, 4 (Aug. 2013), 99–110.
[3] Pat Bosshart et al. 2014. P4: Programming Protocol-independent Packet Proces-

sors. SIGCOMM 44, 3 (July 2014), 87–95.

ACM SIGCOMM Computer Communication Review Volume 49 Issue 5, October 2019

88



[4] Ken Calvert. [n. d.]. Reflections on Network Architecture: An Active Networking
Perspective. SIGCOMM Comput. Commun. Rev. (April [n. d.]).

[5] T. M. Chen and A. W. Jackson. 1998. Commentaries on "Active networking and
end-to-end arguments". IEEE Network 12, 3 (May 1998), 66–71.

[6] Brent Chun et al. 2003. PlanetLab: An Overlay Testbed for Broad-coverage
Services. SIGCOMM Comput. Commun. Rev. (July 2003).

[7] The P4 Language Consortium. 2018. P4 Language Specification v1.1.0.
https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.pdf. (November 2018).

[8] Mihai Dobrescu et al. 2009. RouteBricks: Exploiting Parallelism to Scale Software
Routers. In SOSP. ACM, New York, NY, USA, 15–28.

[9] Allen B. Downey. 1999. Using Pathchar to Estimate Internet Link Characteristics.
In SIGCOMM. 241–250.

[10] Nathan Farrington, Erik Rubow, and Amin Vahdat. 2009. Data Center Switch
Architecture in the Age of Merchant Silicon. In IEEE Symposium on High Perfor-
mance Interconnects (HOTI ’09). IEEE Computer Society, Washington, DC, USA,
93–102.

[11] Nick Feamster, Jennifer Rexford, and Ellen Zegura. 2014. The Road to SDN: An
Intellectual History of Programmable Networks. SIGCOMM Comput. Commun.
Rev. 44, 2 (April 2014), 87–98.

[12] C. Filsfils, N. K. Nainar, C. Pignataro, J. C. Cardona, and P. Francois. 2015. The
Segment Routing Architecture. In GLOBECOM. 1–6.

[13] Open Networking Foundation. 2015. OpenFlow Switch Specification Ver 1.5.1.
TS-025. (March 2015).

[14] Steven McCanne and Van Jacobson. 1993. The BSD Packet Filter: A New Architec-
ture for User-level Packet Capture. In USENIX (USENIX’93). USENIX Association,
Berkeley, CA, USA, 2–2.

[15] Nick McKeown et al. 2008. OpenFlow: enabling innovation in campus networks.
Computer Communication Review 38, 2 (2008), 69–74.

[16] OpenConfig. 2016. OpenConfig. (2016). http://openconfig.net
[17] P4.org. 2016. In-band Network Telemetry (INT). P4 Dataplane Telemetry Specifi-

cation. (June 2016).
[18] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and S. Shenker. 2009. Ex-

tending Networking into the Virtualization Layer. In HotNets-VIII.
[19] Arjun Singh et al. 2015. Jupiter Rising: A Decade of Clos Topologies and Central-

ized Control in Google’s Datacenter Network. In SIGCOMM. ACM, New York,
NY, USA, 183–197.

[20] David L. Tennenhouse and David J. Wetherall. 1996. Towards an Active Network
Architecture. Computer Communication Review 26, 2 (April 1996), 5–17.

[21] David Wetherall. 1999. Active Network Vision and Reality: Lessons from a
Capsule-based System. In SOSP (SOSP ’99). ACM, New York, NY, USA, 64–79.

ACM SIGCOMM Computer Communication Review Volume 49 Issue 5, October 2019

89

http://openconfig.net

	Abstract
	1 Introduction
	2 Reflections
	3 Conclusion
	Acknowledgments
	References

