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ABSTRACT

We introduced the concept of a digital fountain as a scalable approach
to reliable multicast, realized with fast and practical erasure codes,
in a paper published in ACM SIGCOMM ’98. This invited editorial,
on the occasion of the 50th anniversary of the SIG, reflects on the
trajectory of work leading up to our approach, and the numerous
developments in the field in the subsequent 21 years. We discuss
advances in rateless codes, efficient implementations, applications
of digital fountains in distributed storage systems, and connections
to invertible Bloom lookup tables.
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1 OVERVIEW

The original inspiration for working on designing efficient erasure
codes was the problem of streaming video over lossy broadcast and
multicast networks. The prevailing solutions at the time (the mid
’90s) used feedback and retransmission schemes, each of which ran
into scalability problems as the number of receivers grew large. An
initial project at the International Computer Science Institute (ICSI)
in Berkeley explored an orthogonal approach: use erasure codes to
protect against packet loss [1], [2], [17].

The erasure code approach had a different scalability issue: the en-
coding and decoding complexity of the existing erasure codes at the
time were too high to be practical as the size of the source data grew
large. Another ICSI-led project tackled this issue, designing and im-
plementing erasure codes, informally known as Tornado codes [21],
[22], which are the first channel capacity achieving erasure codes
with linear time encoding and decoding algorithms.

A growing realization was that erasure codes (including Tornado
codes) had yet another scalability limitation: erasure codes were
designed for a fixed code rate, defined to be the ratio of the source
data size to the encoded data size. For example, a 1MB source file
encoded with a rate 2/3 erasure code produces a 1.5MB encoding.
A problem with a fixed code rate is that it is difficult to predict in
advance the amount of data loss, i.e., since at least IMB of the 1.5MB
encoding is needed to recover the 1IMB source file, the receiver is
not able to decode if the packet loss rate exceeds 33%.

For point-to-point delivery, a conservative overestimate of the
packet loss rate can be used, and the receiver can explicitly signal
the sender once enough encoding has been received. This can cause
inefficiencies, i.e., if an excessive amount of encoding is lost then
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decoding can not occur and the receiver falls back to retransmission
based protocols.

More fundamentally, in a multicast setting where concurrent
receivers experience different packet loss patterns, efficiently or-
chestrating transmissions from a fixed amount of encoding (see,
e.g., [31]), becomes unwieldy at best, and runs into significant scal-
ing issues as the number of receivers grows.

The research described in [6], [7] (awarded the ACM SIGCOMM
Test of Time award) introduced the concept of an erasure code
without a predetermined code rate. Instead, as much encoded data
as needed could be generated efficiently from source data on the
fly. Such an erasure code was called a digital fountain in [6], [7],
which also described a number of compelling use cases. For example,
streaming applications naturally need to dynamically adjust in real-
time the amount of encoded data to generate and send, particularly
when the data loss rate (or rates) is not known in advance. As another
example, independently generated fountain-encoded data for the
same source data at independent locations could then be transmitted
in parallel to the same receiver, without need for coordination [5].
Today, we call a digital fountain a fountain code (also sometimes
called a rateless code).

2 INTELLECTUAL PRECURSORS TO
FOUNTAIN CODES

In addition to work on rate-based erasure codes from the coding
theory community, the theoretical computer science community had
developed several core concepts that served as precursors to the digi-
tal fountain approach. Notably, Shamir’s secret-sharing scheme [36]
provided a means to share an encoded message amongst n parties,
such that any subset of k parties could jointly decode the original
message exactly (and where zero information was revealed to col-
Iuding subgroups of smaller size). His method elegantly involves
viewing a secret as coefficients of a degree k polynomial, where shar-
ing a secret and recovering a secret amounts to sampling n points
from, and uniquely solving for, a degree k polynomial, respectively.
Subsequently, Rabin’s information dispersal algorithm (IDA) [35]
devised a method to disperse a file F into n > k encoded pieces,
each of size % such that any k of the n pieces suffice to reconstruct
F. The key to this construction is to view the file symbolically, as a
sequence of elements from a finite field, e.g., numbers mod p, and
then use carefully chosen linear combinations of symbols of the file
to produce the encoded pieces. Recovery of the file from k encoding
pieces then amounts to inverting an k X k matrix. Ensuring that this
is always possible necessitates that all possible recovery matrices
are full rank. By encoding with a Cauchy matrix, this guarantee can
be achieved, along with O(k?) decoding time.
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As with these prior works, the digital fountain approach also had
the any k of n concept at its core, viewing a reliable network transfer
as an ordered sequence of k packet-sized chunks, but facilitating
it through the transmission of n > k unordered encoding packets.
At network scale, k could be many orders of magnitude larger than
envisioned in the IDA approach, so quadratic decoding was problem-
atic. Also, as we have stated, it was desirable to be able to generate
encoding symbols on the fly, so that n could be essentially unlimited
and not specified in advance, but coding theory did not have efficient
methods for this case. In particular, generating a new symbol should
take only a small amount of time, with o(k) operations, and ideally a
constant number of operations (or constant on average).

Our ideal digital fountain had four properties:

e scalability up to very large k;

e ability to generate n >> k encoded packets on the fly, with
low per packet generation cost;

e exactly k of n encoded packets needed for decoding; and

e linear-time encoding and decoding.

Absent methods to achieve all the desiderata at once, our first re-
alization of fountain codes, Tornado codes, could scale to large
m and provided linear time decoding. Tornado codes allowed for
n > ¢ - k encoded packets for any desired constant ¢ > 1, but the
value for ¢ would have to be chosen in advance, and the n pack-
ets were highly structured, so they were not naturally generated on
the fly. Also, Tornado codes compromised on the exactly k of n
requirement, and instead required receipt of (1 + €) - k packets to de-
code, where the constant € would affect the encoding and decoding
time through a In(1/¢) multiplicative factor. Several generations of
fountain codes have made great strides over our original Tornado
code implementation (some described below), with the standardized
RaptorQ code [48], [37] providing a realization of fountain codes
that achieves all four criteria essentially optimally.

3 PRACTICAL FOUNTAIN CODES

In a series of research papers [19], [27], [37], increasingly better
practical designs of fountain codes were invented. This work devel-
oped not only the theoretical foundations of the new codes but also
practical implementations.

The company Digital Fountain, Inc. developed a suite of products
around fountain code technology, e.g., [38], [24]. Fountain codes
have been used in deployments by major IPTV providers in Asia and
Europe; as well as by movie studios, branches of the armed services,
defense contractors, the postal service, and satellite system providers
in the United States.

Fountain codes have also been widely adopted in network stan-
dards. A protocol suite for delivering multimedia data over broadcast
and multicast networks based on fountain code technology was stan-
dardized through the Internet Engineering Task Force (IETF); see,
for example [48], [49], [45], [44], [50], [43], [46], [47], [42]. The
protocol suite based on the Raptor code specified in [45] is an inte-
gral part of the 3G/4G/5G Multimedia Broadcast/Multicast Service
(MBMS) standard [51]. The more advanced RaptorQ code [48],
[37], developed by a team at Qualcomm Technologies, Inc. (which
acquired Digital Fountain) is integrated into the ATSC 3.0 standard
to provide packet loss protection at the Internet Protocol (IP) layer
for streaming and object data delivery [41].
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4 FOUNTAIN CODE INSPIRED RESEARCH

There has been a large body of academic research related to foun-
tain code technology. The surveys [26], [37], [30], provide general
overviews of fountain code technologies.

We see many of the themes in the work on digital fountains
reappear several years later in the work on network coding. In our
work on digital fountains, we were focused on source encoding,
treating the internal network as devices that just passed packets
along, as had historically been the case. Network coding, taking
advantage of the the growth of computing power and corresponding
“smarts” within the network, allowed internal nodes in the network
to participate in the encoding, creating new (linear) combinations
of encoded data within the network, not just at the source [39], [25].
Content distribution was also one of the first applications suggested
for network coding, and early application papers noted the natural
connection [12]. Conceptually similar work employed variants of
online coding at intermediaries in overlay networks and on wire-
less mesh networks. For example, COPE [15] demonstrates how
nodes in a wireless mesh network can improve throughput by oppor-
tunistically XORing packets together and retransmitting them, using
a flavor of online coding. A similar opportunistic coding strategy
across data chunks was used for fast set reconciliation across overlay
networks in content delivery applications [4].

Further, the concept of rateless codes has led to novel construc-
tions of rateless codes for additional channels, including standard
error channels. Examples include spinal codes [33] and rateless
codes based on polar codes [18]. Rateless codes have also helped ad-
vance new ideas in coding, such as protographs and spatially coupled
codes [8], [28].

Outside of coding, an outgrowth of the digital fountain work
was a greater understanding of what has been referred to as peeling
algorithms [14]. A peeling algorithm can be set up as a graph (or
hypergraph), where vertices and the adjacent edges can be removed
step by step according to some rule, until at the end of the process
the graph is empty. For simple removal rules and sparse graphs, this
leads to linear time algorithms in the greedy style. The Tornado codes
used in the digital fountain paper provided a prominent example of
a peeling algorithm.

A notable further example of a peeling based algorithm is the
Invertible Bloom Lookup Table, or IBLT, which can be used to
synchronize distributed data [11], [13], [10]. Suppose Alice and Bob
each have a set of keys K4 and K, which are each very large, but
the set difference (K4 U Kg) — (K4 N Kp) is itself very small. It
would be useful if both parties could determine the set difference
with a message of size proportional to the size of the set difference,
instead of the size of the actual sets. IBLTs allow this to happen,
using a mechanism reminiscent of Tornado codes: Alice XORs her
keys into a small array, each key being XORed into a small number
of cells based on a shared hash function; Bob receives the results
and XORs his keys into the array using the same hash function; in
the final array, only keys in the set difference remain, and they are
then peeled out of the structure. The connections between IBLTs
and coding have been noted [29]. IBLTs are now starting to find
uses in networking as a foundational data structure; they have been
suggested as a means for synchronizing blockchains [40], [32].
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Fountain codes have frequently been suggested as a building block
for distributed storage systems, as in [3] [16],[34] [9]. In a recent
example, a liquid system [23] proposes using fountain codes, lazy
repair, and flow storage organization to provide durable object stor-
age based on spreading redundantly generated data across a network
of hundreds to thousands of potentially unreliable storage nodes.
Liquid system can be operated to enable flexible and essentially
optimal combinations of storage durability, storage overhead, repair
bandwidth usage, and access performance. Recent work [20] proves
information theoretic lower bounds on the tradeoffs between storage
overhead and repair bandwidth, showing that a liquid system is close
to optimal in these tradeoffs.

5 THE FUTURE OF FOUNTAIN CODES

Although fountain code technology has been around for several
years, and has been useful in many deployments, it is still not ubiq-
uitous. One potential reason for this is that there are patents on
the underlying fountain code technology, including several patents
owned by Qualcomm Technologies, Inc. Qualcomm has published
an IPR statement in the IETF for the RaptorQ code!, which mirrors
the licensing commitment Qualcomm, Inc. has made with respect
to the MPEG DASH standard. This may resolve significant patent
issues.

A second issue is that developing high-performance implemen-
tations of such codes are not straightforward. Projects to develop
implementations suitable for deployment are therefore useful; one
such ongoing project is Codornices [52]. At the current time, the
source code for the Codornices project implementation of the Rap-
torQ fountain code is available to commercial entities for unlimited
deployment for a flat annual license fee.
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