
Public Review for

Using Application Layer Banner Data to
Automatically Identify IoT Devices

Talha Javed, Muhammad Haseeb, Muhammad Abdullah, Mobin
Javed

This paper is of the ”repeatable technical papers” type, which are technical
contributions that provide their artefacts, e.g., software, datasets. This paper
attempts to replicate a Usenix Security 2018 paper. It describes the efforts of
the authors at re-implementing the solution described in the Usenix Security
paper. Unfortunately, the authors of the Usenix Security paper did not
reply to requests for artefacts, making the effort all the more worthwhile and
challenging for the authors of this paper.
The re-implementation in this paper is evaluated based on ground truth data
collected by the authors. Consistently with the type of paper, the authors
release all software and datasets, to help the reproducibility their results.
The authors discuss in detail various aspects that are design choices that
were not originally described in the Usenix Security paper and are likely to
have an impact on the results. Besides the details of the re-implementation,
the datasets considered in this paper differ from the ones used in the Usenix
Security paper, with a more diverse set of IoT devices, therefore asking for
further studies to delineate the respective influence of the technique and the
data. The results reveal significant differences in the performance of the tech-
nique of the original paper, with a way lower performance of the technique
than reported in the original paper. Such a difference in the performance of
the evaluated technique asks for further work to understand the respective
impacts of the datasets used and of the implementation details.
This paper is a great example for our community. We hope it will encourage
additional reproducibility studies, and maybe even encourage the authors of
the original paper to respond to requests for artefacts, thereby helping the
community to understand the considered problem better.

Public review written by
Steve Uhlig

Queen Mary University of London, UK

ACM SIGCOMM Computer Communication Review Volume 50 Issue 3, July 2020

Using Application Layer Banner Data to Automatically Identify
IoT Devices

Talha Javed
NUST Pakistan

tjaved.bscs15seecs@seecs.edu.pk

Muhammad Haseeb
LUMS Pakistan

20100192@lums.edu.pk

Muhammad Abdullah
LUMS Pakistan

19030003@lums.edu.pk

Mobin Javed
LUMS Pakistan

mobin.javed@lums.edu.pk

ABSTRACT
In this paper, we re-implement a recent work published in Usenix
Security 2018: “Acquistional Rule Based Engine for Discovering
Internet-of-Things Devices”. The paper introduced an NLP-based
engine for automatically identifying the type, vendor, and product
of IoT devices given banner data as input. We report on our efforts
to reproduce the original implementation of the engine, document-
ing ambiguities around implementation and evaluation details that
we encountered, as well as how we addressed them in our work.
We evaluate our implementation on two ground truth datasets,
finding that it fails to achieve the accuracy reported by the original
authors. Our findings highlight the importance of recent commu-
nity efforts towards a culture of reproducibility by presenting an
example of how ambiguities in a research paper combined with lack
of access to the original datasets can significantly affect a faithful
re-implementation and evaluation.

CCS CONCEPTS
• General and reference → Evaluation; • Networks → Net-
work management;

KEYWORDS
IoT, Device Fingerprinting, Reproducibility

1 INTRODUCTION
The recent years have seen an enormous growth in the diversity of
Internet-connected devices. In addition to the traditional network-
ing and computing devices, IoT devices such as smart fridges, smart
TVs, and smart home assistants are part of many networks today.

Reliable fingerprinting of Internet-connected devices, i.e., iden-
tifying the device type, vendor, and product model is valuable for
various network management and security applications, as well as
broadly for various Internet measurement studies (for example, the
authors in [1] use device fingerprinting to understand what devices
are targeted by the Mirai botnet). Towards this end, two notable
tools have gained popular use in the community: (i) First is Nmap,
the open source network mapper, which identifies the device type
and vendor through a combination of remote OS fingerprinting and
identifying what services are running on the device [7]; (ii) Second
is Ztag (part of the open source ZMap project) [8], which takes
banners of services running on the device as input and labels them
using a predefined rule database. A major limitation of both fin-
gerprinting tools is that they rely on manually crafted rules. Given

the growing number of vendors manufacturing IoT devices, iden-
tification of devices via hand-crafted rules is no longer a scalable
solution.

A recent paper, “Acquistional Rule Based Engine for Discovering
Internet-of-Things Devices” (here on referred to as ARE) addresses
the “manually crafted” rules problem, and proposes a solution that
given banner data, can automatically learn new rules to identify
previously unseen devices [4]. The key idea behind this paper is
to search the service banner data on the Internet, and use Natural
Language Processing (NLP) techniques to mine the returned web-
pages for the likely device type, vendor, and product corresponding
to the given banner.

Per the paper, the ARE authors intended to make the project
open-source, as well as to provide an API based on the engine: “...
we release ARE as an open source project for the community. ARE is
available to public at http://are1.tech/, providing public the APIs on
the tuple (type, vendor, product) and the annotated data set”. However,
the above mentioned link is no longer operational at the time of
this writing — likely due to the project not being maintained any
longer. Further, we were unsuccessful in our email communication
attempts to obtain the datasets and source code used by the authors.

In this work, we independently attempt to re-implement ARE
and reproduce the results of the ARE paper. We report on a num-
ber of ambiguities (some crucial ones) regarding implementation
details, and how we address them. Due to the lack of availability
of ground truth datasets used in the original paper, we compile
two alternate ground truth datasets for evaluating our implemen-
tation. The first dataset contains 4,919 unique banners collected
from publicly accessible Internet-connected devices, labeled using
Ztag. The second dataset contains 129 unique banners collected
from devices in home networks, labeled using a combination of OUI
(Organizationally Unique Identifier) database lookups and manual
labeling by the device owners. We created the first dataset in a man-
ner similar to the original paper, i.e, collecting a random sample
of banners from public Internet-connected devices. We added the
second dataset to complement the first by providing a sample of
banners from IoT devices found in home networks today. These
two datasets although different than the original paper, allow us to
study the promise of ARE in automatically learning rules for IoT
devices — its main advantage over prior fingerprinting approaches
that require manual effort.

We find that our ARE implementation performs quite poorly
when compared to the results reported in the original paper. The
authors report precision and recall numbers close to 95–97%, but

ACM SIGCOMM Computer Communication Review Volume 50 Issue 3, July 2020

we observe a precision of 4–63% and a recall of 1–21% on our
datasets. We outline the ambiguities in the paper that may have
led us to making design choices different than the original work,
consequently affecting a faithful re-implementation. We publicly
release our datasets and source code for the community [6].

The rest of the paper is organized as follows: we present back-
ground on three device fingerprinting tools (Nmap, Ztag, and ARE)
in Section 2. Section 3 discusses our re-implementation of ARE.
Section 4 describes the datasets we use in this paper. Section 5
discusses the performance of ARE. In Section 6, we discuss how
to reproduce the results in this paper. We conclude in Section 7 by
providing a few pointers on best practices and workflows that can
help improve the reproducbility of a work.

2 BACKGROUND
In this section, we first present the reader with a brief background
on two popular device fingerprinting tools, Nmap and Ztag, sketch-
ing how theywork and their detection power in terms of the number
of device types, vendors, and products their databases are able to
label. We follow this with a detailed description of how the ARE
engine works.

2.1 Nmap
Nmap detects the vendor (and product labels in some instances) of
the devices via two approaches: (i) remote OS fingerprinting, and
(ii) service detection. The former involves sending a series of probe
packets to the device, and looking for patterns, for example in ISNs.
The latter involves two methods: first is application exclusivity,
i.e., if an application is known to run only on a given OS for e.g.,
Windows, Nmap infers the OS as such, and the vendor as Microsoft;
second is extracting OS information from service banners. However,
the rules based on the above methods are largely manually crafted,
and are capable of detecting 27 device types and 804 vendors,1
with the device types dominated by traditional networking and
computing devices.

2.2 Ztag
Ztag relies on an expert rule database for labeling devices, with
very little public information available on how these rules are con-
structed. In order to determine Ztag’s labeling capability, we pro-
cessed one snapshot of Censys data (dated 7/31/19) that has Ztag
labels for a full IPv4 Internet scan, and found that the labels contain
37 unique device types, 185 unique vendors, and 1,895 unique prod-
uct labels. When compared to Nmap, Ztag is capable of labeling
Scada devices (such as power monitor, scada controller, and water
flow controller) in addition to many devices supported by Nmap.

2.3 ARE: Acquistional Rule-Based Engine
Acquisitional Rule-based Engine is a framework for automatically
learning rules that map an IoT device’s application layer data (ban-
ner) to its <device type, vendor, product name> tuple. It requires no
manual input or labeling. The underlying assumption behind the
engine is that banners from IoT devices usually contain keywords,
which when searched on Google, lead to webpages that contain the
1We obtained these numbers by parsing the fingerprint database available at: https:
//svn.nmap.org/nmap/nmap-service-probes.

respective device’s information. ARE learns rules by processing the
banner data in the following fashion:

(1) Preprocessing: Remove irrelevant text (dictionary words/
stop words/ tags, etc) from the banner. The remaining words are
grouped to get queries to be searched on Google.

(2) Named Entity Recognition: For each query from (1), the
top ten webpages returned by Google Search are processed to ex-
tract device types (by matching against a predefined list), vendors
(by matching against a predefined list), and product names (ex-
tracted using a regular expression).

(3) Local Dependency: The extracted list of device types, ven-
dors, and product names is then examined for local dependency,
i.e, whether they appear together in the text in a certain order.2
The entities that appear together in the text are grouped into a
device annotation tuple, of the form ⟨device type, vendor, product⟩
or ⟨device type, vendor⟩ if the product is missing.

(4) Apriori Algorithm: Each device annotation tuple gives
a new transaction of the form: banner => ⟨device type, vendor,
product⟩ (or banner => ⟨device type, vendor⟩). ARE then lever-
ages the Apriori algorithm to infer rules from the transactions. The
Apriori algorithm is a data mining algorithm used for finding what
items frequently appear together in an item-set dataset. An item-set
dataset contains entries called “transactions” comprising of multi-
ple items (the length of the transaction can vary). The algorithm
learns rules of the format: if x then y, indicating if x appears in the
database, then usually y appears with it. We explain this further
by using the following example transactions in the format {banner,
device type, vendor, product(?)}:
{mikrotik router v500.1,router,mikrotik,ipad 2},
{mikrotik router v500.1,router,tenda},
{mikrotik router v500.1,alarm system, mikrotik},
{mikrotik router v500.1,router,mikrotik,500.1},
{SSH 2.0 dropbear_2019,security camera,tenda,p9.0},
{SSH 2.0 dropbear_2019,smart coffee machine,smartBrew},
{SSH 2.0 dropbear_2019,nas, microsoft,i9}

The Apriori algorithm first finds frequent item sets in a bot-
tom up manner, by defining a support threshold parameter, and
only retaining the itemsets that pass the threshold at each level.
For a support threshold of 2, the frequent item-sets for the above
transactions are as follows:

Level 1: Individual items

mikrotik router v500.1 4
router 3
mikrotik 3
SSH 2.0 dropbear_2019 3

Level 2: Two-item combinations

mikrotik router v500.1, router 3
mikrotik router v500.1, mikrotik 2

Level 3: Three-item combinations

mikrotik router v500.1, router, mikrotik 2

Next, the algorithm extracts rules of the form if x then y from
the frequent item sets. Here, the algorithm uses a second parameter
confidence, defined as:

2We refer the reader to Figure 3 in the original ARE paper for details.

ACM SIGCOMM Computer Communication Review Volume 50 Issue 3, July 2020

https://svn.nmap.org/nmap/nmap-service-probes
https://svn.nmap.org/nmap/nmap-service-probes

Confidence(X → Y) =
Support count(X∪Y)
Support count(X)

A rule X → Y having confidence of 70% means that at least 70%
of the times X appears together with Y. The rules that satisfy a
confidence threshold of 70% in this example are as follows:

From Level 2:
mikrotik router v500.1 => router 3/4 (75%)
router => mikrotik router v500.1 3/3 (100%)
mikrotik router v500.1 => mikrotik 3/4 (75%)
mikrotik => mikrotik router v500.1 3/3 (100%)

From Level 3:
[router, mikrotik] => mikrotik router v500.1 2/2 (100%)

Based on the above rules, the banner “mikrotik router v500.1”,
will be labeled as ⟨device_type: router, vendor: mikrotik⟩.

3 RE-IMPLEMENTING ARE
In this section, we list the ambiguities we found while attempting
to re-implement ARE, and how we handled them. Such ambiguities
often arise because research papers in general strive to convey the
high-level ideas and findings of the approach as clearly as possible,
while keeping the implementation details to a minimum.3 However,
as we highlight below with the help of examples from the ARE
paper, these omissions can hinder a faithful re-implementation:

(1) After removing the tags, stop words, and dictionary words
from the banner data, the next step is to generate a sequence of
queries from the remaining keywords, but the paper is unclear
on how exactly to do this. The paper also mentions using Term
Frequency-Inverse Document Frequency (TF-IDF) values to find im-
portant keywords, implying these are more deserving to be present
in the queries, but is ambiguous on how the TF-IDF values are
eventually used. In our implementation, we use TF-IDF to pick the
five most important words from the banner.4 We then form a search
string from these words, by joining them with the space separator.

(2) The ARE engine then extracts device types, vendors, and
product names from the crawled webpages by using dictionary
lists and regexes. The paper is unclear on how to get the list of
1522 vendors (in Table 1 of the paper) the authors used for this
extraction. We used a list of 3,194 unique vendors obtained from
www.iotone.com/suppliers (3,008) and the Ztag database (186).

(3) Related to (2), the regex for extracting product names given
in Table 1 of the paper seems to be broken. It does not, for exam-
ple, detect the following product names in Table 2 of the paper:
SRX210HE, P-660HN-51, HL-3170CDW.We initially used this regex
in our implementation, but upon observing that it does not ex-
tract any product name from webpages, we modified the regex. We
leveraged the same idea as described in Section 3.3 of the original
paper, i.e., product names typically contain a combination of letters
and numbers, perhaps containing the symbol “-”. We picked 20
random vendors from our vendor list, and searched the Internet for
their products, compiling a list of product names. In addition, we
added to this list the product names listed in Table 2 of the original

3As these can be distracting for themajority of the readers not interested in reproducing
the work.
4We chose five based on the observation that a higher number of keywords leads to
very specific queries for which Google does not return any search results. Using a
lower number of keywords results in missing some important keywords. We did not
however carry out rigorous experimentation to determine the optimal value.

paper that should have been matched by the original regex. The
modified regex we use is: [A-Za-z]+[-]?[A-Za-z]*[0-9]+[-]?[-]?[A-
Za-z0-9].*?[0-9a-zA-Z]* and it catches all the 25 product names in
our list.

Since we based the regex modifications on a seed list of 25 prod-
uct names, we then determined how well it performs when run
on webpages. We tested the regex on a random sample of 10 web-
pages, returned by our query searches against our ground truth
Censys dataset. The old regex does not match any products (zero
TPs and zero FPs), whereas our modified regex resulted in 108 TPs
and 504 FPs. Since the product name format matches many other
non product name strings, false positives are an inherent limitation
of the regex approach to extract product names. However, we note
that these false positives get filtered further down the pipeline be-
cause most of these strings do not have a local dependency with
the vendor and device type in the text.

(4) The paper also mentions that ARE should filter out banners
from non-IoT devices. However, further details on how to detect
whether a banner is from an IoT device seem to be incomplete. The
authors only provide filtering rules for HTTP banners, omitting
the other banner types. Further, for HTTP, the only unambiguous
filter mentioned is that banners containing heavyweight server
names like Apache, IIS, and Nginx should be dropped. The paper
lacks details on the thresholds for the other two HTTP filtering
heuristics, i.e., (i) the number of scripts, words, pictures in the
webpage of IoT devices is small, and (ii) the number of external links
in webpages of IoT devices is small. Given the lack of thresholds,
our implementation only performs filtering on the three server
names mentioned in the paper.

(5) Finally, the paper is unclear on whether the local dependency
finding (between device type, vendor and product) is done per
sentence or per page. We do it per sentence since it seems to be the
more logical choice from a natural language point of view.

4 DATASETS
The original ARE paper uses two datasets for evaluation. The first
contains 350 randomly chosen IoT devices from the Internet. This
dataset contains 4 different device types (NVR, NVS, router, and
ipcamera), 64 vendors, and 314 products. The second contains 1,000
devices across 10 device types and 77 vendors. (The paper does
not mention the list of device types and number of products in the
second dataset). The authors obtained ground truth labels for the
first dataset by searching the application layer responses on the
Internet, and manually labeling them. It is unclear how the authors
obtained ground truth labels for the second dataset. We refer to the
first dataset as Internet-350 and the second as Internet-1000 in this
paper.

Since these datasets are not publicly available, we collect two
different ground truth datasets for evaluation of ARE. The two
datasets are complementary; the first contains banners from pub-
licly accessible devices (replicating the strategy in the ARE paper),
and the second contains banners from devices in home networks
behind NATs. The first dataset contains similar banner types as in
the original paper, whereas the second dataset contains additional
banner types. This helps us study the power of the ARE approach

ACM SIGCOMM Computer Communication Review Volume 50 Issue 3, July 2020

www.iotone.com/suppliers

Table 1: Evaluation datasets used in this work.

Censys Ferret
Unique banners 4,919 129
Unique device types 28 9
Unique vendors 76 22
Unique products 564 63

Table 2: Performance comparison of our implementation
with the original implementation in the ARE paper.

Dataset Implementation Precision Recall
Internet-350 ARE paper 95.7% 94.9%
Internet-1000 ARE paper 97.5% (Not reported)
Censys-4919 This paper 62.5% 1.0%
Ferret This paper 4.0% 20.8%

on two complementary datasets. Table 1 summarizes our datasets
and we describe them below:

Censys dataset: We collected this dataset as follows: we first
queried Censys and obtained the list of all the IP addresses where
the corresponding Ztag labels and at least one of FTP, TELNET, and
HTTP banners was available. We obtained this dataset on Feb 20,
2020. From this list, we picked 10K IP addresses randomly5, and
obtained the corresponding banners from Censys. The dataset con-
tains 4,919 unique banners [3,783 HTTP, 957 FTP, and 179 TELNET],
corresponding to 28 device types, 76 vendors, and 564 products. We
use the Ztag labels from Censys as ground truth.

Home network (Ferret) dataset: Our second dataset was col-
lected using an Android application, Ferret. This application scans
the given network for connected devices, and probes them to col-
lect HTTP, SSH, and UPnP banners. The application automatically
identifies the vendor by looking up the MAC address of the device
in the OUI (Organizationally Unique Identifier) database [5]. The
application then also prompts the user to identify the devices by
presenting them an interface with a list of IP addresses, along with
instructions on how to identify the device type, vendor (if not al-
ready identified by OUI lookup), and product corresponding to a
given IP address. This gives us the ground truth labels, which we
then manually checked, discarding any banners with bogus labels.
We asked volunteers (students in an undergraduate Computer Se-
curity class) to run the application in their home networks, and
obtained banner data from 69 networks. This dataset contains 129
unique banners [4 HTTP, 34 SSH, and 91 UPNP], corresponding to
09 unique device types, 22 vendors, and 63 products.

We make both the datasets available to the community. For the
Ferret dataset, we anonymized any unique identifiers in the dataset
(for example, the “uuid” field in UPNP banners).

5 EVALUATION
For evaluation, we use the same support and confidence threshold
values, as in the paper (0.1% support and 50% confidence).We use the

5using the Mersenne Twister algorithm in Python’s random package, as in the original
paper.

Table 3: ARE pipeline numbers on the Censys and Ferret
datasets.

Censys Ferret
Unique banners 4,919 129
Valid IoT banners 4,025 125
Query Generation

At least one query word 4,025 125
Web Crawler

At least one search result 2,710 73
Named Entity Recognition

At least one device type 2,672 71
At least one vendor 2,690 73
At least one product label 2,673 73

Local Dependency Finder
At least one <device, vendor> 2,189 26
At least one <device, vendor, product> 1,569 13

Apriori Algorithm
At least one rule 40 26

Table 4: Performance of ARE pipeline with varying number
of banners in the Censys dataset.

Banners IoT Banners Precision Recall
500 402 38.23% 26.37%
1K 810 56.92% 11.98%
2K 1,627 79.62% 13.95%
3K 2,458 85.71% 9.56%
4K 3,284 79.38% 3.90%

4.9K 4,025 62.5% 1.0%

top five keywords as search queries identified by TF-IDF. We men-
tion the values of all the configurable parameters in the config.py
file provided in the source code (these include parameters we used
for each stage of the pipeline, such as web page download timeout
and maximum file size for the web crawler stage).

In addition to the design decisions mentioned in Section 3, we
add the following capabilities to our implementation in order to
handle our datasets: (i) we use a wider device-type list than the
original ARE implementation; the original paper uses a list of 21
device types — we use a list comprising all the device types that
Nmap, Ztag, and the original ARE implementation can label (103
in total: 21 ARE and 82 Nmap and Ztag). This is required because
our ground truth labels (obtained from Ztag and manual labeling)
contain more device types than the original ARE paper.6 Further,
using a wider list ensures that the engine is not dataset specific,
rather it is able to handle IoT device types from any dataset, and
(ii) we add pre-processing support for UPnP banners to process
our second dataset, as the original paper does not handle them. We
observed that the UPnP banners contain timestamps and unique

6For example, our dataset includes scada controller, environment monitor, and power
monitor device types, not present in the ARE device types list.

ACM SIGCOMM Computer Communication Review Volume 50 Issue 3, July 2020

identifiers that when present in the search queries do not result in
any search results. We add pre-processing to remove them.7

Metrics: The ARE paper uses coverage: TP/(FP+FN) and precision:
TP/(FP+TP) to evaluate the quality of the learnt rules. We find that
the paper is unclear on how the authors define false positives and
false negatives in this context (is it at the granularity of rules or
banners?). Further, given that the engine can learn multiple rules
against a banner, the authors do not clarify whether they pick the
highest confidence rule against each banner while computing the
metrics or keep all the rules for the given banner. We keep all the
learnt rules, since a given banner can indeed correspond to multiple
device types, vendors, and products.We define a rule as false positive
if it labels the banner incorrectly, and true positive if it labels the
banner correctly. A false negative “rule” is not meaningful in this
context. We use the same definition of precision as in the paper
i.e, TP/ (FP+TP), but compute coverage as the number of labeled
banners out of the total valid IoT banners in the dataset. (Given the
above discussion, we believe that the definition of coverage in the
original paper i.e, TP/(FP + FN) is incorrect).

We now discuss ARE’s performance on our datasets.
Coverage: ARE learnt rules for 40 out of the 4,919 banners in

the Censys data, and 26 out of the 125 banners in the Ferret data,
resulting in very poor coverage. In contrast, the ARE paper claims
a coverage of 94.9% on the Internet-350 ground truth dataset. The
authors do not report coverage on the Internet-1000 dataset.

Table 3 sketches how many banners get dropped at each stage of
the ARE pipeline. After filtering the error and non-IoT banners, 82%
Censys and 97% Ferret banners remain. We compute the percentage
reduction for the rest of the stages with respect to the banners
retained in this stage (i.e., 4,025 banners in case of Censys and 125
in case of Ferret). The next stage of searching queries corresponding
to these banners on Google results in a significant drop of banners;
only 67% and 58% of the valid IoT banners from the previous stage
result in at least one webpage. We do not see a considerable drop
in the next stage, i.e., named entity recognition, indicating that the
pages are high quality, containing at least one device type, vendor,
or product. Local dependency detection further reduces the banners
to 54.4% in case of Censys and 20.8% in the case of Ferret. Finally,
after the Apriori algorithm stage only 1% of Censys banners and
20.8% of Ferret banners remain.

We ran the ARE engine on different subsets of the Censys dataset
to study how the precision and recall vary with the number of
banners in the dataset. Table 4 shows decreasing coverage with
increasing number of banners. This could be due to two reasons, (i)
the search queries formed are dependent on what other banners
are present in the dataset (due to TF-IDF weighting), and (ii) the
Apriori algorithm results are affected by what other banners are
present in the dataset. Increasing the number of banners results in
an increase in the number of transactions, which may result in the
correct transactions not finding enough support to form a rule. The
ARE paper does not comment on the decreasing coverage with the
increasing number of banners.

Precision: ARE’s precision is also fairly low compared to the
95-97% precision claimed by the original paper. 35 out of the 56
rules ARE learnt on the Censys dataset are correct, and 11 out of

7We refer the reader to our source code for pre-processing details.

the 276 rules on the Ferret dataset are correct. The device types
in the correct rules are { camera, nas, printer, router } and the
vendors are { axis, hp, synology, tp-link }. The identified vendor
in the correct rules is always present in the banner itself (with
one exception, i.e., tp-link). All the correct rules are of the form:
<device only>, <vendor only>, or <device, vendor>. None of the
correct rules contain products. These results indicate that most of
the banners that ARE labels correctly could also have been easily
labeled via a much simpler approach, i.e., directly extracting device
types and vendors from the banners.

6 REPRODUCING RESULTS OF THIS WORK
We provide the data and source code used in this work at [6]. The
README file explains how to set up and run the code. We cau-
tion the reader that the pipeline involves fetching data from the
Internet and because the returned search results may vary by time
and location of querying, it may not be possible to obtain the ex-
act precision and recall numbers we report (but the reproduced
numbers should be close). Further, reproducing results on the full
Censys-4919 dataset requires access to a paid Google search JSON
API key.8 However, reproducing results on the Ferret data and a
subset of Censys data should be possible with a free version of the
API.

7 CONCLUSION
We re-implemented a recently proposed framework for automati-
cally learning rules to label IoT devices. While pursuing this effort,
we encountered several ambiguities regarding implementation and
evaluation details, which we documented in this work. Due to the
lack of availability of groundtruth datasets used in the original pa-
per, we evaluated our implementation on datasets different than the
original paper, finding that we fail to achieve the accuracy reported
by the ARE authors. Our lack of success in reproducing the results
of the original paper could be due to differences (including potential
errors) in our implementation, differences in evaluation metrics, or
due to the different evaluation datasets we used.

Our reproducibility effort highlights that seemingly unimportant
details often omitted in a research paper can lead to an increased
cost in terms of effort for follow-on work that attempts to build
upon the original work. While it may not be possible to carefully
document every detail and control knob setting in the main body
of the paper, adopting practices to share datasets and source-code
(including a config file detailing the settings used), or a technical re-
port detailing the experimental conditions under which the authors
achieved the results is necessary for the community to build on the
original work. For best practices and workflows to help improve
reproducibility of a research work, we refer the interested readers
to The Dagstuhl Beginners Guide to Reproducibility for Experimental
Networking Research [3]. Another good resource on the topic is the
more extensive Dagstuhl Seminar 18412 report: Encouraging Repro-
ducibility in Scientific Research of the Internet [2], which documents
broader community discussions on moving towards a culture of
reproducible research.

8Custom Search JSON API provides 100 search queries per day for free. Additional
requests cost $5 per 1000 queries, up to 10k queries per day.

ACM SIGCOMM Computer Communication Review Volume 50 Issue 3, July 2020

REFERENCES
[1] Manos Antonakakis, Tim April, Michael Bailey, Matthew Bernhard, Elie Bursztein,

Jaime Cochran, Zakir Durumeric, J. Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma, Joshua Mason, Damian Menscher,
Chad Seaman, Nick Sullivan, Kurt Thomas, and Yi Zhou. 2017. Understanding the
Mirai Botnet. In Proceedings of the 26th USENIX Conference on Security Symposium
(SEC’17). USENIX Association, Berkeley, CA, USA.

[2] Vaibhav Bajpai, Olivier Bonaventure, kc claffy, and Daniel Karrenberg. 2019. En-
couraging Reproducibility in Scientific Research of the Internet. Dagstuhl Reports
8, 10 (Jan 2019), 41–62.

[3] Vaibhav Bajpai, Anna Brunstrom, Anja Feldmann, Wolfgang Kellerer, Aiko Pras,
Henning Schulzrinne, Georgios Smaragdakis, Matthias Wählisch, and Klaus

Wehrle. 2019. The Dagstuhl Beginners Guide to Reproducibility for Experimental
Networking Research. SIGCOMM Comput. Commun. Rev. 49, 1 (2019), 24–30.

[4] Xuan Feng, Qiang Li Li, Haining Wang, and Limin Sun. 2018. Acquisitional rule-
based engine for discovering internet-of-things devices. In Proceedings of the 27th
USENIX Conference on Security Symposium (SEC’18). USENIX Association.

[5] IEEE. 2019. IEEE Registration Authority: Assignments. https://regauth.standards.
ieee.org/standards-ra-web/pub/view.html#registries.

[6] Talha Javed. 2020. Accompanying Source Code and Datasets for this Work. https:
//github.com/talhajavedmukhtar/ARE-rt.

[7] Nmap. 2019. Nmap: the Network Mapper - Free Security Scanner. https://nmap.
org.

[8] ZTag. 2019. Zmap/Ztag: Tagging and Annotation Framework for Scan Data.
https://github.com/zmap/ztag.

ACM SIGCOMM Computer Communication Review Volume 50 Issue 3, July 2020

https://regauth.standards.ieee.org/standards-ra-web/pub/view.html#registries
https://regauth.standards.ieee.org/standards-ra-web/pub/view.html#registries
https://github.com/talhajavedmukhtar/ARE-rt
https://github.com/talhajavedmukhtar/ARE-rt
https://nmap.org
https://nmap.org
https://github.com/zmap/ztag

