Yang Zhou, Omid Alipourfard, Minlan Yu, Tong Yang
Abstract
Network measurement plays an important role for many network functions such as detecting network anomalies and identifying big flows. However, most existing measurement solutions fail to achieve high performance in software as they often incorporate heavy computations and a large number of random memory accesses. We present Agg-Evict, a generic framework for accelerating network measurement in software. Agg-Evict aggregates the incoming packets on the same flows and sends them as a batch, reducing the number of computations and random memory accesses in the subsequent measurement solutions. We perform extensive experiments on top of DPDK with 10G NIC and observe that almost all the tested measurement solutions under Agg-Evict can achieve 14.88 Mpps throughput and see up to 5.7× lower average processing latency per packet.
The link to Download the full article points to the public review instead of the technical paper
Corrected, thanks for the feedback.