Category Archives: CCR July 2017

Using Networks to Teach About Networks (Report on Dagstuhl Seminar #17112)

Jürgen Schönwälder , Timur Friedman, Aiko Pras.
Abstract

This report summarizes a two and a half days Dagstuhl seminar on “Using Networks to Teach About Networks”. The seminar brought together people with mixed backgrounds in order to exchange experiences gained with different approaches to teach computer networking. Despite the obvious question of what to teach, special attention was given to the questions of how to teach and which tools and infrastructures can be used effectively today for teaching purposes.

Download the full article

Workshop on Internet Economics (WIE2016) Final Report

kc claffy, David Clark.
Abstract

On December 8-9 2016, CAIDA hosted the 7th interdisciplinary Workshop on Internet Economics (WIE) at the UC San Diego’s Supercomputer Center. This workshop series provides a forum for researchers, Internet facilities and service providers, technologists, economists, theorists, policy makers, and other stakeholders to inform current and emerging regulatory and policy debates. This year we first returned to the list of aspirations we surveyed at the 2014 workshop, and described the challenges of mapping them to actions and measurable
progress. We then reviewed evolutionary shifts in traffic, topology, business, and regulatory models, and (our best understanding of) the economics of the ecosystem. These discussions inspired an extended thought experiment for the second day of the workshop: outlining a new telecommunications legislative framework, including proposing a set of
goals and scope of such regulation, and minimal list of sections required to pursue and measure progress toward those goals. The format was a series of focused sessions, where presenters prepared 10-minute talks on relevant issues, followed by in-depth discussions. This report highlights the discussions and presents relevant open research questions identified by participants. Slides presented and this report are available at
http://www.caida.org/workshops/wie/1612/.

Download the full article

On the Evolution of ndnSIM: an Open-Source Simulator for NDN Experimentation

Spyridon Mastorakis, Alexander Afanasyev, Lixia Zhang.
Abstract

As a proposed Internet architecture, Named Data Networking (NDN) takes a fundamental departure from today’s TCP/IP architecture, thus requiring extensive experimentation and evaluation. To facilitate such experimentation, we have developed ndnSIM, an open-source NDN simulator based on the NS-3 simulation framework. Since its first release in 2012, ndnSIM has gone through five years of active development and integration with the NDN prototype implementations, and has become a popular platform used by hundreds of researchers around the world. This paper presents an overview of the ndnSIM design, the ndnSIM development process, the design tradeoffs, and the reasons behind the design decisions. We also share with the community a number of lessons we have learned in the process.

Download the full article

Geohyperbolic Routing and Addressing Schemes

Ivan Voitalov, Rodrigo Aldecoa, Lan Wang, Dmitri Krioukov.
Abstract

The key requirement to routing in any telecommunication network, and especially in Internet-of-Things (IoT) networks, is scalability. Routing must route packets between any source and destination in the network without incurring unmanageable routing overhead that grows quickly with increasing network size and dynamics. Here we present an addressing scheme and a coupled network topology design scheme that guarantee essentially optimal routing scalability. The FIB sizes are as small as they can be, equal to the number of adjacencies a node has, while the routing control overhead is minimized as nearly zero routing control messages are exchanged even upon catastrophic failures in the network. The key new ingredient is the addressing scheme, which is purely local, based only on geographic coordinates of nodes and a centrality measure, and does not require any sophisticated non-local computations or global network topology knowledge for network embedding. The price paid for these benefits is that network topology cannot be arbitrary but should follow a specific design, resulting in Internet-like topologies. The proposed schemes can be most easily deployed in overlay networks, and also in other network deployments, where geolocation information is available, and where network topology can grow following the design specifications.

Download the full article

Knowledge-Defined Networking

Albert Mestres, Alberto Rodriguez-Natal, Josep Carner, Pere Barlet-Ros, Eduard Alarcón, Marc Solé, Victor Muntés-Mulero, David Meyer, Sharon Barkai, Mike J. Hibbett, Giovani Estrada, Khaldun Ma, Florin Coras, Vina Ermagan, Hugo Latapie, Chris Cassar, John Evans, Fabio Maino, Jean Walrand.
Abstract

The research community has considered in the past the application of Artificial Intelligence (AI) techniques to control and operate networks. A notable example is the Knowledge Plane proposed by D.Clark et al. However, such techniques have not been extensively prototyped or deployed in the field yet. In this paper, we explore the reasons for the lack of adoption and posit that the rise of two recent paradigms: Software-Defined Networking (SDN) and Network Analytics (NA), will facilitate the adoption of AI techniques in the context of network operation and control. We describe a new paradigm that accommodates and exploits SDN, NA and AI, and provide use-cases that illustrate its applicability and benefits. We also present simple experimental results that support, for some relevant use-cases, its feasibility. We refer to this new paradigm as Knowledge-Defined Networking (KDN).

Download the full article