Tag Archives: editorial

Recommendations for Designing Hybrid Conferences

Vaibhav Bajpai, Oliver Hohlfeld, Jon Crowcroft, Srinivasan Keshav, Henning Schulzrine, Jorg Ott, Simone Ferlin-Reiter, Georg Carle, Andrew Hines, Alexander Raake

Abstract

During the Covid-19 pandemic, many smaller conferences have moved entirely online and larger ones are being held as hybrid events. This reduces the carbon footprint of conference travel and
makes events more accessible to parts of the research community that have difficulty traveling long distances. Hybrid events will become an attractive alternative in the future since they make meetings broadly available without the need for travels, while preserving all elements of in-person gatherings. While we have developed a solid understanding of how to design virtual events, we do not yet know how to properly run hybrid events. We present guidelines and considerations–spanning technology, organization and social factors–for organizing successful hybrid conferences. This is the output of a Dagstuhl seminar on “Climate Friendly Internet Research” held in July 2021.

Download from ACM

A Case for an Open Customizable Cloud Network

Dean H. Lorenz, David Breitgand, Kathy Barabash, Etai Lev-Ran, Danny Raz

Abstract

Cloud computing is transforming networking landscape over the last few years. The first order of business for major cloud providers today is to attract as many organizations as possible to their own clouds. To that end cloud providers offer a new generation of managed network solutions to connect the premises of the enterprises to their clouds. To serve their customers better and to innovate fast, major cloud providers are currently on the route to building their own “private Internets”, which are idiosyncratic. On the other hand, customers that do not want to stay locked by vendors and who want flexibility in using best-for-the-task services spanning multiple clouds and, possibly, their own premises, seek for solutions that will provide smart overlay connectivity across clouds.

The result of these developments is a multiplication of closed idiosyncratic solutions rather than an open standardized ecosystem. In this editorial note we argue for desirability of such an ecosystem, outline the main requirements and sketch possible solutions. We focus on enterprise as our primary use case and illustrate the main ideas through it, but the same principles apply to various different use cases.

Download from ACM

The April 2022 issue

This April 2022 issue contains five technical papers and two editorial notes.

The first technical paper, Data-Plane Security Applications in Adversarial Settings, by Liang Wang and colleagues, investigates security issues that may arise when creating and running data-plane applications for programmable switches. This work moves security analysis and design forward in this particular area. This paper also calls for a more thorough rethinking of security for data-plane applications for programmable switches.

The second technical paper, One Bad Apple Can Spoil Your IPv6 Privacy, by Said Jawad Saidi and colleagues, leverages IPv6 passive measurements to pinpoint that a non-negligible portion of devices encodes their MAC address in their IPv6 address. This threatens users’ privacy, allowing content providers and CDNs to consistently track users and their devices across multiple sessions and locations. Overall, the paper is an excellent contribution toward privacy-by-design solutions and a nicely executed measurements study that clarifies the problem and provides solid suggestions to mitigate the problem.

The third technical paper, Hyper-Specific Prefixes: Gotta Enjoy the Little Things in Interdomain Routing, by Khwaja Zubair Sediqi and colleagues, investigates the presence of high-specific prefixes (HSP) on the BGP Internet routing during the last decade. These prefixes are more-specific than /24 (/48) for IPv4 (IPv6) and are commonly filtered by Autonomous Systems operators. Overall this paper offers a nice contribution to the understanding of the BGP universe, with a clear message and a nice quantification of the phenomenon. The authors clearly present and motivate the work, offering also to not experts a nice view of the routing complexity of the internet nowadays.

The fourth technical paper, Programming Socket-Independent Network Functions with Nethuns, by Nicola Bonelli and colleagues, proposes a new solution to transparently develop packet-processing programs on top of different network I/O frameworks. The authors design and develop an open-source library, nethuns, serving as a unified programming abstraction for network functions that natively supports multi-core programming. Not only is this work very relevant to our community, but also the code is released open-source through a BSD license, which can be used to foster more research in the area, towards unifying programming mechanisms of end-host networking.

The fifth technical paper, Measuring DNS over TCP in the Era of Increasing DNS Response Sizes: A View from the Edge, by Mike Kosek and colleagues, studies one of the foundations of today’s Internet: the Domain Name Service (DNS). The original RFC document of DNS instructs to send queries either over UDP (DoUDP) or TCP (DoTCP). This paper presents a measurement study on DoTCP focusing on two perspectives: failure rates and response times.

Finally, we have two editorial notes. A Case for an Open Customizable Cloud Network, by Dean H. Lorenz and his colleagues, argues for the desirability of the new ecosystem of managed network solutions to connect to the Cloud, outlines the main requirements and sketches possible solutions. Recommendations for Designing Hybrid Conferences, by Vaibhav Bajpai and colleagues, presents guidelines and considerations–spanning technology, organization and social factors–for organizing successful hybrid conferences.

I hope that you will enjoy reading this new issue and welcome comments and suggestions on CCR Online (https://ccronline.sigcomm.org) or by email at ccr-editor at sigcomm.org.

Answering three questions about networking research

Jennifer Rexford, Scott Shenker

Abstract

Researchers often talk about specific technical trends or research topics. But we rarely talk about how and why we do the research that we do. The process of submitting and reviewing papers puts our ideas through a particular kind of filter that may make all of the research seem like it follows some standard rubric, a SIGCOMM Normal Form if you will. During a panel at HotNets’21, five researchers—Hari Balakrishnan, Jon Crowcroft, Jennifer Rexford, Scott Shenker, and David Tennenhouse—each answered three questions about how they pick their own research topics, what areas they would like to see more research on, and how they evaluate conference papers. Due to the unexpectedly positive response to that panel, CCR will be publishing a series of answers to these three questions, starting with two participants from the panel but reaching out to others to provide answers from a broader cross-section of the SIGCOMM community.

Download from ACM

Important concepts in data communications

Craig Partridge

Abstract

The data communications field recently marked the 50th anniversary of the start of the ARPANET, which was one of the first and certainly the most influential of the early data communications networks. The anniversary provoked discussions about which concepts or ideas in data communications have proven to be enduring in the evolution of data communications. This paper presents one perspective.

Download from ACM

M-Lab: user initiated internet data for the research community

Phillipa Gill, Christophe Diot, Lai Yi Ohlsen, Matt Mathis, Stephen Soltesz

Abstract

Measurement Lab (M-Lab) is an open, distributed server platform on which researchers have deployed measurement tools. Its mission is to measure the Internet, save the data and make it universally accessible and useful. This paper serves as an update on the MLab platform 10+ years after its initial introduction to the research community [5]. Here, we detail the current state of the M-Lab distributed platform, highlight existing measurements/data available on the platform, and describe opportunities for further engagement between the networking research community and the platform.

Download from ACM

Roadmap for edge AI: a Dagstuhl perspective

Aaron Yi Ding, Ella Peltonen, Tobias Meuser, Atakan Aral, Christian Becker, Schahram Dustdar, Thomas Hiessl, Dieter Kranzlmüller, Madhusanka Liyanage, Setareh Maghsudi, Nitinder Mohan, Jörg Ott, Jan S. Rellermeyer, Stefan Schulte, Henning Schulzrinne, Gürkan Solmaz, Sasu Tarkoma, Blesson Varghese, Lars Wolf

Abstract

Based on the collective input of Dagstuhl Seminar (21342), this paper presents a comprehensive discussion on AI methods and capabilities in the context of edge computing, referred as Edge AI. In a nutshell, we envision Edge AI to provide adaptation for data-driven applications, enhance network and radio access, and allow the creation, optimisation, and deployment of distributed AI/ML pipelines with given quality of experience, trust, security and privacy targets. The Edge AI community investigates novel ML methods for the edge computing environment, spanning multiple sub-fields of computer science, engineering and ICT. The goal is to share an envisioned roadmap that can bring together key actors and enablers to further advance the domain of Edge AI.

Download from ACM

The January 2022 issue

This January 2022 issue contains three technical papers and four editorial notes.

The first technical paper, Zeph & Iris Map the Internet – A resilient reinforcement learning approach to distributed IP route tracing, by Matthieu Gouel and colleagues, proposes to improve topology discovery by optimizing the use of existing probing resources. This can be done by intelligently allocating probing directives to vantage points. The system is based on the inter-working of two components: Iris, which takes care of the route tracing, and Zeph, which coordinates Iris’s measurements. The results in the paper show that Zeph, in combination with Iris, are able to facilitate fast topology measurements from geographically distributed vantage points.

The second technical paper, Towards Retina-Quality VR Video Streaming: 15ms Could Save You 80\% of Your Bandwidth, by Luke Hsiao and colleagues, investigates how to provide retina-quality video streaming in virtual reality (VR). The paper studies the impact of the motion-to-photon latency — the time between a change in the viewer’s gaze and the resulting change in the display’s pixels — on a VR system. This metric is paramount for VR systems since it impacts video compression. The paper shows, experimentally, that a client and streaming server system with sub-15 ms end-to-end motion-to-photon latency benefit from 5x better video compression than in presence of larger latencies. The paper also shows how to build such a low latency system both hardware and software-wise.

The third technical paper, Towards client-side active measurements without application control, by Palak Goenka and colleagues, proposes to harness Network Error Logging (NEL) to enable active client-side measurements (RTT and connection availability) by dynamically modifying the HTTPS endpoint where NEL reports should be uploaded. Network Error Logging (NEL) is a W3C standard which defines how web servers can receive from a browser reports about performance and failures of web requests. The techniques used in the paper enable active client-side measurements in the browser without requiring Javascript code injection, which is the current and more invasive state of the art solution.

Finally, we have four editorial notes. Roadmap for Edge AI: A Dagstuhl Perspective, by Aaron Yi Ding and his colleagues, based on the collective input of Dagstuhl Seminar (21342), presents a comprehensive discussion on AI methods and capabilities in the context of edge computing, referred as Edge AI. Then, M-Lab: User initiated Internet data for the research community, by Phillipa Gill and her colleagues, presents Measurement Lab (M-Lab), an open, distributed server platform on which researchers have deployed measurement tools. Important Concepts in Data Communications, by Craig Partridge, presents one perspective about which concepts or ideas in data communications have proven to be enduring in the evolution of data communications. Finally, Answering Three Questions About Networking Research, by Jennifer Rexford and Scott Shenker, presents the first of a series of answers to three questions that were asked to panelists during HotNets’21, about how they pick their own research topics, what areas they would like to see more research on, and how they evaluate conference papers.

I hope that you will enjoy reading this new issue and welcome comments and suggestions on CCR Online (https://ccronline.sigcomm.org) or by email at ccr-editor at sigcomm.org.

Data-driven networking research: models for academic collaboration with industry (a Google point of view)

Jeffrey C. Mogul, Priya Mahadevan, Christophe Diot, John Wilkes, Phillipa Gill, Amin Vahdat

Abstract

We in Google’s various networking teams would like to increase our collaborations with academic researchers related to data-driven networking research. There are some significant constraints on our ability to directly share data, which are not always widely-understood in the academic community; this document provides a brief summary. We describe some models which can work – primarily, interns and visiting scientists working temporarily as employees, which simplifies the handling of some confidentiality and privacy issues. We describe some specific areas where we would welcome proposals to work within those models.

Download from ACM

The October 2021 issue

This October 2021 issue contains two technical papers, two educational contributions, and one editorial note.

The first technical paper, When Latency Matters: Measurements and Lessons Learned, by Marco Iorio and colleagues, evaluates the “latency argument” for edge computing, i.e., that placing elastic computing and storage platforms in close proximity to end-users makes sense for latency-critical applications. The paper evaluates several sources of latency, including latency induced by core network routing inefficiencies, wired and wireless access network, transport protocol and application protocol. The paper concludes that moving data-centers close to the users is only a small part of the latency problems, and that solving it requires a more careful coordination of efforts across the network stack.

The second technical paper, REDACT: Refraction Networking from the Data Center, by Arjun Devraj and colleagues, extends the concept of refraction networking by assigning the edge router of a cloud datacenter the role of a decoy router.

The first educational contribution, Machine learning-based Analysis of COVID-19 Pandemic Impact on US Research Networks, by Mariam Kiran and colleagues, sheds light on the performance of a large network throughout the COVID-19 pandemic. Extensive traces are studied and analyzed, with a number of interesting findings using various statistical techniques.

The second educational contribution, An educational toolkit for teaching cloud computing, by Cosimo Anglano and colleagues, proposes the creation of a software layer to hide the specifics of the underlying cloud platforms from students, enabling them to perform their assignments atop a general API. The proposed approach is an innovative idea to improve the educational experience of students on cloud platforms.

Finally, we have an editorial note. Data-driven Networking Research: models for academic collaboration with industry (a Google point of view), by Jeffrey C. Mogul and his colleagues, describes collaboration models aimed at stimulating data-driven networking research. The authors describe specific areas where they would welcome proposals to work within those models.

I hope that you will enjoy reading this new issue and welcome comments and suggestions on CCR Online (https://ccronline.sigcomm.org) or by email at ccr-editor at sigcomm.org.